LaTeX templates and examples — Assignments
Handy LaTeX templates for homework assignments to use at school, college, and university. They’re great for teachers to prep classes too.
Recent
![COSC-4765-HW2-TEMPLATE](https://writelatex.s3.amazonaws.com/published_ver/5485.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=a0806aa44598779b765ec23d6a2ac9a371184f3d6c4a1ba590ed53f5fcb90915)
Homework Template for UWYO COSC-4765 Computer Security - Homework #2
![Assessment Report](https://writelatex.s3.amazonaws.com/published_ver/5400.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=8f571bba456ecd8ad854f577cde4bbb25c16c726f49874ab552ffa7856ce8cee)
standard template for a uni assessment
![CS 109 Problem Set Template](https://writelatex.s3.amazonaws.com/published_ver/5362.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=87467519725e2b9a7206cac077f583c8afacfbd67c6b1ae15826f32713640db1)
Template for CS 109 PSET at Stanford
![MATH 304 Template](https://writelatex.s3.amazonaws.com/published_ver/5357.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=7b86400b3e1fae0a2b50b19e06fa9b6026ebfdeb027b674fa87fe3e806c5d8bd)
Homework template for MATH 304 Spring 2017
![eahf7](https://writelatex.s3.amazonaws.com/published_ver/4861.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=6ce8a9448a484f1b71f5df1f866574f4b7e85da23dd8e5dad5e383ae979f8f11)
Az egész együtthatós polinomok Q és Z feletti felbontásainak kapcsolatáról szóló tétel bizonyítása. (Az SZTE matematika alapszak Algebra és számelmélet (MBNK13) kurzusához házi feladat.)
![eahf5](https://writelatex.s3.amazonaws.com/published_ver/4794.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=a806e0d74db720c8fe38f5772aff39ce8388d5a084c07858faf9e795c280cffa)
A test feletti polinomok maradékos osztásáról szóló tétel bizonyítása. (Az SZTE matematika alapszak Algebra és számelmélet (MBNK13) kurzusához házi feladat.)
![Carleton College Comps Template A](https://writelatex.s3.amazonaws.com/published_ver/4578.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=68cc9620b17aad6c920926934e0e12a71a1471df138e9d86b963b21c085d7c49)
One of the acceptable templates for writing a physics comps paper at Carleton College. This template is part of an internal wiki page for students at Carleton College.
![EECE Tuks template](https://writelatex.s3.amazonaws.com/published_ver/4524.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=96eead39a495607674a5fec3344aa500bc31a200f9e3f30856507b3ab3aa1e4a)
LaTeX template for EECE Undergraduates at University of Pretoria
![Template for proofs in Discrete and Argumentative Mathematics](https://writelatex.s3.amazonaws.com/published_ver/4533.jpeg?X-Amz-Expires=14400&X-Amz-Date=20250206T004302Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAWJBOALPNFPV7PVH5/20250206/us-east-1/s3/aws4_request&X-Amz-SignedHeaders=host&X-Amz-Signature=b99aac4ed575edf47cd6c13dc4bb93894b7b9eaf6c92a71589b0ad1106a95f91)
This is the template for DAM (discrete and argumentative mathematics). We prove theorem $2.1$ using the method of proof by way of contradiction. This theorem states that for any set $A$, that in fact the empty set is a subset of $A$, that is $\emptyset \subset A$.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.