A gallery of up-to-date and stylish LaTeX templates, examples to help you learn LaTeX, and papers and presentations published by our community. Search or browse below.
Benford law states that the occurrence of digits from 0-9 in a large set of data is not uniformly distributed but instead in a decreasing logarithmic distribution with 1 occurring at most. Almost all set of data follows this trend however this law is widely used as a base for various fraud detection and forensic accounting. Benford’s law is an observation that leading digits in data derived from measurements doesn’t follow uniform distribution. Different financial statements such as cash flows, income statement and balance sheet of the 20 tech companies of the Fortune 500 are analyzed in this project. Cash flow is the net amount of cash and cash-equivalents moving into and out of a business. Income statement is a financial statement that measures a company's financial performance over a specific accounting period. Balance sheet is a financial statement that summarizes a company's assets, liabilities and shareholders’ equity at a specific point in time. All of these data of financial statements are extracted from Morning Star database and are analyzed by Python program written by me.I also wrote the Python program to calculate Benford's second digit and third digit probability using the formula. I would like to thank Prof. Erin Wagner and Dr. Courtney Taylor for helping in this research project.
Gene regulatory networks have an important role to study the behaviour of genes. By analysing
these Gene Regulatory Networks we can get the detailed information i.e. the occurrence of diseases by
changing behaviour of GRNs. Many different approaches are used (i.e. qualitative modelling and hybrid
modelling) and various tools (i.e. GenoTech, GINsim) have been developed to model and simulate gene
regulatory networks. GenoTech allows the user to specify a GRN on Graphical User Interface (GUI) according
to the asynchronous multivalued logical functions of René Thomas, and to simulate and/or analyse its
qualitative dynamical behaviour. René
Thomas discrete modelling of gene regulatory network (GRN) is a
well known approach to study the dynamics of genes. It deals with some parameters which reflect the possible
targets of trajectories. Those parameters are priory unknown. These unknown parameters are fetched using
another model checking tool SMBioNet. SMBioNet produces all the possible parameters satisfying the given
Computational Logic Tree (CTL) formula as input. This approach involving logical parameters and conditions
also known as qualitative modelling of GRN. However, this approach neglects the time delays for a gene to
pass from one level of expression to another one i.e. inhibition to activation and vice versa. To find out these
time delays, another modelling tool HyTech is used to perform hybrid modelling of GRN.
We have developed a Java based tool called GenNet http://asanian.com/gennet to facilitate the
model checking user by providing a unique GUI layout for both qualitative and quantitative modelling of GRNs.
As we discussed, three separate modelling tools are used for complete modelling and analysis of a GRN. This
process is much lengthy and takes too much time. GenNet assists the modelling users by providing some extra
features i.e. CTL editor, parameters filtering and input/output files management.
GenNet takes a GRN network as input and does all the rest of computations i.e. CTL verification,
K-parameters generation, parameter implication to GRN, state graph, hybrid modelling and parameter
filtration automatically. GenNet serves the user by computing the results within seconds that were taking hours
and days of manual computation
This is a modified ONE COLUMN version of
the Deedy Resume LaTeX Template v1.1, originally by
Debarghya Das at https://github.com/deedydas/Deedy-Resume.
Um artigo que sugere somente a compreensão dos limites, sem o uso de sua definição formal, que se desenvolve até o entendimento das operações de diferenciação.
Created using the Deedy - One Page Two Column Resume from LaTeX Template, Version 1.1 (30/4/2014).
Original author:
Debarghya Das (http://debarghyadas.com)
Original repository:
https://github.com/deedydas/Deedy-Resume