%% V1.0
%% 2021/28/11
%% Developed by Alex Giménez Romero on top of a Techset developed templates (https://es.overleaf.com/latex/templates/royal-society-open-science-template/mxtbwxgrjmtj, https://es.overleaf.com/latex/templates/proceedings-of-the-royal-society-a-latex-template/zskbvgrsmmcv)
\documentclass[openacc]{rsproca_new}%%%%where rsproca is the template name
%Add here your packages or commands
\usepackage{lipsum}
\usepackage{multicol}
\addbibresource{refs.bib}
%%%% *** Do not adjust lengths that control margins, column widths, etc. ***
%%%%%%%%%%% Defining Enunciations %%%%%%%%%%%
\newtheorem{theorem}{\bf Theorem}[section]
\newtheorem{condition}{\bf Condition}[section]
\newtheorem{corollary}{\bf Corollary}[section]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\jname{rsif}
\Journal{J R Soc Interface\ }
\begin{document}
%%%% Article title to be placed here
\title{Add your title here}
\author{%%%% Author details
Author 1$^{1}$, Author 2$^{2,1}$, Author 3$^{1}$, Author 4$^{1}$}
%%%%%%%%% Insert author address here
\address{$^{1}$Address 1\\
$^{2}$Address 2}
%%%% Subject entries to be placed here %%%%
\subject{xxxxx, xxxxx, xxxx}
%%%% Keyword entries to be placed here %%%%
\keywords{xxxx, xxxx, xxxx}
%%%% Insert corresponding author and its email address}
\corres{Corresponding author\\
\email{corresponding.author@whatever}}
%%%% Abstract text to be placed here %%%%%%%%%%%%
\begin{abstract}
\lipsum[1-4]
\end{abstract}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% Insert the texts which can accomdate on firstpage in the tag "fmtext" %%%%%
\begin{fmtext}
\lipsum[1]
\end{fmtext}
%%%%%%%%%%%%%%% End of first page %%%%%%%%%%%%%%%%%%%%%
\maketitle
\begin{multicols}{2}
\section{Introduction}
\lipsum[1]
\lipsum[1]\cite{McKendrick}
\lipsum[1]\cite{Filipe2003, Brauer2008, Cross2005}
\section{Methods}
\begin{theorem}\label{T0.1}
Assume that $\alpha>0, \gamma>1, \beta>\frac{\gamma+1}{\gamma-1}$.
Then there exists a small $\tau_1>0$, such that for $\tau\in
[0,\tau_1)$, if $c$ crosses $c(\tau)$ from the direction of
to a small amplitude periodic traveling wave solution of
(2.1), and the period of $(\check{u}^p(s),\check{w}^p(s))$ is
\[
\check{T}(c)=c\cdot \left[\frac{2\pi}{\omega(\tau)}+O(c-c(\tau))\right].
\]
\end{theorem}
\begin{condition}\label{C2.2}
From (0.8) and (2.10), it holds
$\frac{d\omega}{d\tau}<0,\frac{dc}{d\tau}<0$ for $\tau\in
[0,\tau_1)$. This fact yields that the system (2.1) with delay
$\tau>0$ has the periodic traveling waves for smaller wave speed $c$
than that the system (2.1) with $\tau=0$ does. That is, the
delay perturbation stimulates an early occurrence of the traveling waves.
\end{condition}
\section{Results}
\lipsum[1]
\begin{equation}
H=\int\frac{1}{2}mv
\end{equation}
\lipsum[1]
\section{Conclusions}
\lipsum[1]
\appendix
\section{Appendix 1}
\lipsum[1-3]
\end{multicols}
\enlargethispage{20pt}
\ethics{Insert ethics text here.}
\dataccess{Insert data access text here.}
\aucontribute{Insert author contribute text here.}
\competing{Insert competing text here.}
\funding{Insert funding text here.}
\ack{Insert acknowledgment text here.}
\disclaimer{Insert disclaimer text here.}
%%%%%%%%%% Insert bibliography here %%%%%%%%%%%%%%
\printbibliography
\end{document}