Beamer B-Fredholm
Author:
Noureddine
Last Updated:
7 years ago
License:
Creative Commons CC BY 4.0
Abstract:
Beamer très rouge
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
Beamer très rouge
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\documentclass[10pt,hyperref={pdfpagemode=FullScreen}]{beamer}
\usefonttheme{serif}
\usepackage[french]{babel}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{kpfonts}
%%%%% Le thème %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamercolor{structure}{fg=yellow}
\setbeamercolor{normal text}{fg=white,bg=red}
\setbeamertemplate{background canvas}{\includegraphics[width=\paperwidth,height=\paperheight]{texture}}
%%%%% Mes commandes et environements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newtheorem{proposition}[theorem]{Proposition}
%%%%% Titres %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{\bfseries Les opérateurs B-Fredholm}
\subtitle{Une extension avantageuse des opérateurs de Fredholm}
\author[N. RAFIK]{
Réalisé par: Noureddine RAFIK \\
Encadré par: M. BENDAOUD \& M. SARIH}
\institute[U.M.I / Faculté des sciences - Meknès]{UNIVERSITÉ MOULAY ISMAÏL \\ Faculté des sciences - Meknès Maroc}
%\date{1 Novembre 2014}
%\titlegraphic{\includegraphics[scale=0.1]{name}}
%%%%% Le corps du document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\frame{\titlepage}
\section{Introduction}
\begin{frame}
\transdissolve
\centering\Huge Introduction
\end{frame}
\begin{frame}{Motivation}
\transblindsvertical
Dans l'espoir d'étendre en dimension infini certaines propriétés des opérateurs linéaires en dimension finie
\begin{itemize}
\item<1-> Outils de l'analyse fonctionnelle
\pause
\begin{theorem}
$T\in\Phi_{g}(X) \Leftrightarrow T=Q\oplus F$, où $Q$ nilpotent de rang fini, $F$ de Fredholm
\end{theorem}
\pause
\item<1-> Si $K\in \mathcal{K}(X)$, alors $I-K$ est un opérateur de Fredholm d’indice nul, qui jouit de l’alternative suivant:
\[ I-K \text{ injectif} \iff I-K \text{ surjectif} \]
\pause
\item<1-> Espoir de...
\end{itemize}
\end{frame}
\section{Opérateurs B-Fredholm}
\begin{frame}
\centering\Huge Opérateurs B-Fredholm
\end{frame}
\begin{frame}{Rappels}
\transglitter
\begin{itemize}
\item<1-> Un opérateur $T\in L(X)$ est dit \textbf{de Fredholm} si son noyau $N(T)$ est de de dimension finie et son image $R(T)$ est de codimension finie
\pause
\item<1-> Pour un tel opérateur, l'\textbf{indice} est défini par $ind(T)=\dim N(T)-codim R(T)$
\end{itemize}
\end{frame}
\begin{frame}
\transsplitverticalout
\centering\Huge\scshape Merci pour votre attention
\end{frame}
\end{document}