%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% KOMA-Script Presentation
% LaTeX Template
% Version 1.1 (18/10/15)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% Original Authors:
% Marius Hofert (marius.hofert@math.ethz.ch)
% Markus Kohm (komascript@gmx.info)
% Described in the PracTeX Journal, 2010, No. 2
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\documentclass[
paper=128mm:96mm, % The same paper size as used in the beamer class
fontsize=11pt, % Font size
pagesize, % Write page size to dvi or pdf
parskip=half-, % Paragraphs separated by half a line
]{scrartcl} % KOMA script (article)
\linespread{1.12} % Increase line spacing for readability
%------------------------------------------------
% Colors
\usepackage{xcolor} % Required for custom colors
% Define a few colors for making text stand out within the presentation
\definecolor{mygreen}{RGB}{44,85,17}
\definecolor{myblue}{RGB}{34,31,217}
\definecolor{mybrown}{RGB}{194,164,113}
\definecolor{myred}{RGB}{255,66,56}
% Use these colors within the presentation by enclosing text in the commands below
\newcommand*{\mygreen}[1]{\textcolor{mygreen}{#1}}
\newcommand*{\myblue}[1]{\textcolor{myblue}{#1}}
\newcommand*{\mybrown}[1]{\textcolor{mybrown}{#1}}
\newcommand*{\myred}[1]{\textcolor{myred}{#1}}
%------------------------------------------------
%------------------------------------------------
% Margins
\usepackage[ % Page margins settings
includeheadfoot,
top=3.5mm,
bottom=3.5mm,
left=5.5mm,
right=5.5mm,
headsep=6.5mm,
footskip=8.5mm
]{geometry}
%------------------------------------------------
%------------------------------------------------
% Fonts
\usepackage[T1]{fontenc} % For correct hyphenation and T1 encoding
\usepackage{lmodern} % Default font: latin modern font
%\usepackage{fourier} % Alternative font: utopia
%\usepackage{charter} % Alternative font: low-resolution roman font
\renewcommand{\familydefault}{\sfdefault} % Sans serif - this may need to be commented to see the alternative fonts
%------------------------------------------------
%------------------------------------------------
% Various required packages
\usepackage{amsthm} % Required for theorem environments
\usepackage{bm} % Required for bold math symbols (used in the footer of the slides)
\usepackage{graphicx} % Required for including images in figures
\usepackage{tikz} % Required for colored boxes
\usepackage{booktabs} % Required for horizontal rules in tables
\usepackage{multicol} % Required for creating multiple columns in slides
\usepackage{lastpage} % For printing the total number of pages at the bottom of each slide
\usepackage[english]{babel} % Document language - required for customizing section titles
\usepackage{microtype} % Better typography
\usepackage{tocstyle} % Required for customizing the table of contents
\usepackage[utf8]{inputenc}
%------------------------------------------------
%------------------------------------------------
% Slide layout configuration
\usepackage{scrpage2} % Required for customization of the header and footer
\pagestyle{scrheadings} % Activates the pagestyle from scrpage2 for custom headers and footers
\clearscrheadfoot % Remove the default header and footer
\setkomafont{pageheadfoot}{\normalfont\color{black}\sffamily} % Font settings for the header and footer
% Sets vertical centering of slide contents with increased space between paragraphs/lists
\makeatletter
\renewcommand*{\@textbottom}{\vskip \z@ \@plus 1fil}
\newcommand*{\@texttop}{\vskip \z@ \@plus .5fil}
\addtolength{\parskip}{\z@\@plus .25fil}
\makeatother
% Remove page numbers and the dots leading to them from the outline slide
\makeatletter
\newtocstyle[noonewithdot]{nodotnopagenumber}{\settocfeature{pagenumberbox}{\@gobble}}
\makeatother
\usetocstyle{nodotnopagenumber}
\AtBeginDocument{\renewcaptionname{english}{\contentsname}{\Large Overview}} % Change the name of the table of contents
%------------------------------------------------
%------------------------------------------------
% Header configuration - if you don't want a header remove this block
\ihead{
\hspace{-2mm}
\begin{tikzpicture}[remember picture,overlay]
\node [xshift=\paperwidth/2,yshift=-\headheight] (mybar) at (current page.north west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=2\headheight,top color=mygreen!64,bottom color=mygreen]{}; % Colored bar
\node[below of=mybar,yshift=3.3mm,rectangle,shade,inner sep=0pt,minimum width=128mm,minimum height =1.5mm,top color=black!50,bottom color=white]{}; % Shadow under the colored bar
shadow
\end{tikzpicture}
\color{white}\runninghead} % Header text defined by the \runninghead command below and colored white for contrast
%------------------------------------------------
%------------------------------------------------
% Footer configuration
\setlength{\footheight}{8mm} % Height of the footer
\addtokomafont{pagefoot}{\footnotesize} % Small font size for the footnote
\ifoot{% Left side
\hspace{-2mm}
\begin{tikzpicture}[remember picture,overlay]
\node [xshift=\paperwidth/2,yshift=\footheight] at (current page.south west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=3pt,top color=mygreen,bottom color=mygreen]{}; % Green bar
\end{tikzpicture}
\myauthor\ \raisebox{0.2mm}{$\bm{\vert}$}\ \myuni % Left side text
}
\ofoot[\pagemark/\pageref{LastPage}\hspace{-2mm}]{\pagemark/\pageref{LastPage}\hspace{-2mm}} % Right side
%------------------------------------------------
%------------------------------------------------
% Section spacing - deeper section titles are given less space due to lesser importance
\usepackage{titlesec} % Required for customizing section spacing
\titlespacing{\section}{0mm}{0mm}{0mm} % Lengths are: left, before, after
\titlespacing{\subsection}{0mm}{0mm}{-1mm} % Lengths are: left, before, after
\titlespacing{\subsubsection}{0mm}{0mm}{-2mm} % Lengths are: left, before, after
\setcounter{secnumdepth}{0} % How deep sections are numbered, set to no numbering by default - change to 1 for numbering sections, 2 for numbering sections and subsections, etc
%------------------------------------------------
%------------------------------------------------
% Theorem style
\newtheoremstyle{mythmstyle} % Defines a new theorem style used in this template
{0.5em} % Space above
{0.5em} % Space below
{} % Body font
{} % Indent amount
{\sffamily\bfseries} % Head font
{} % Punctuation after head
{\newline} % Space after head
{\thmname{#1}\ \thmnote{(#3)}} % Head spec
\theoremstyle{mythmstyle} % Change the default style of the theorem to the one defined above
\newtheorem{theorem}{Theorem}[section] % Label for theorems
\newtheorem{remark}[theorem]{Remark} % Label for remarks
\newtheorem{algorithm}[theorem]{Algorithm} % Label for algorithms
\makeatletter % Correct qed adjustment
%------------------------------------------------
%------------------------------------------------
% The code for the box which can be used to highlight an element of a slide (such as a theorem)
\newcommand*{\mybox}[2]{ % The box takes two arguments: width and content
\par\noindent
\begin{tikzpicture}[mynodestyle/.style={rectangle,draw=mygreen,thick,inner sep=2mm,text justified,top color=white,bottom color=white,above}]\node[mynodestyle,at={(0.5*#1+2mm+0.4pt,0)}]{ % Box formatting
\begin{minipage}[t]{#1}
#2
\end{minipage}
};
\end{tikzpicture}
\par\vspace{-1.3em}}
%------------------------------------------------
%----------------------------------------------------------------------------------------
% PRESENTATION INFORMATION
%----------------------------------------------------------------------------------------
\newcommand*{\mytitle}{Filtering bond and credit default swap markets} % Title
\newcommand*{\runninghead}{Filtering credit markets} % Running head displayed on almost all slides
\newcommand*{\myauthor}{Peter Cotton} % Presenters name(s)
\newcommand*{\mydate}{April 27, 2016} % Presentation date
\newcommand*{\myuni}{NYU Tandon Faculty Seminar April 27, 2016} % University or department
%----------------------------------------------------------------------------------------
\begin{document}
%----------------------------------------------------------------------------------------
% TITLE SLIDE
%----------------------------------------------------------------------------------------
% Title slide - you may have to tweak a few of the numbers if you wish to make changes to the layout
\thispagestyle{empty} % No slide header and footer
\begin{tikzpicture}[remember picture,overlay] % Background box
\node [xshift=\paperwidth/2,yshift=\paperheight/2] at (current page.south west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=\paperheight/3,top color=mygreen,bottom color=mygreen]{}; % Change the height of the box, its colors and position on the page here
\end{tikzpicture}
% Text within the box
\begin{flushright}
\vspace{0.6cm}
\color{white}\sffamily
{\bfseries\Large\mytitle\par} % Title
\vspace{0.5cm}
\normalsize
\myauthor\par % Author name
\mydate\par % Date
\vfill
\end{flushright}
\clearpage
%----------------------------------------------------------------------------------------
% TABLE OF CONTENTS
%----------------------------------------------------------------------------------------
\thispagestyle{empty} % No slide header and footer
\small\tableofcontents % Change the font size and print the table of contents - it may be useful to shrink the font size further if the presentation is full of sections
% To exclude sections/subsections from the table of contents, put an asterisk after \(sub)section like so: \section*{Section Name}
\clearpage
%----------------------------------------------------------------------------------------
% PRESENTATION SLIDES
%----------------------------------------------------------------------------------------
\section{Filtering credit markets}
\subsection{A visual introduction}
\clearpage
\includegraphics[width=\textwidth]{typical_bond.png}
\clearpage
\includegraphics[width=\textwidth]{dark_bond.png}
\includegraphics[width=\textwidth]{good_bond.png}
\clearpage
\includegraphics[width=\textwidth]{newly_issued_bond.png}
\includegraphics[width=\textwidth]{intermittent_bond.png}
\clearpage
\includegraphics[width=\textwidth]{floating_bond.png}
\clearpage
%------------------------------------------------
\subsection{A unified state space for bond and CDS markets }
Hazard, funding curves can be represented as hidden processes. From this basic state, bond and credit default swaps can be computed using the usual present value computations. Additional state, representing the width of the market at various maturities, can be used to provide a rough estimate of where trading will occur. The actual observed trades $y_{t_i}$ are considered noisy measurements of a non-linear function of state $x_{t_i}$.
\begin{equation}
y_{t_i} = h\left( x_{t_i} \right) + \epsilon_i
\end{equation}
where $h$ incorporates credit default swap or bond pricing formulas, depending on the observation in question.
\subsubsection{Kalman filtering}
Linearize by differentiation, for now. Then consider a sequence of observations times \(t_1,...,t_k\) at which our latent vector process \(x\) is observed indirectly, via an observation equation
\begin{equation} y_{t_i} = H_i x_{t_i} + \epsilon_i
\end{equation}
We assume \(\epsilon_i\) is mean zero multivariate gaussian with covariance \(R_i\). For brevity we refer to \(y_{t_i}\) as \(y_i\), \(x_{t_i}\) as \(x_i\) and so forth. We assume the evolution of \(x\) in between the times specified can be written
\begin{equation}
x_{i+1} = A_i x_i + u_i
\end{equation} where \(u_i\) are also gaussian. In this linear gaussian system the recursive estimation of \(x_t\) is achieved by the well known Kalman filter.
\myblue{I think we knew that already!}
\clearpage
\subsection{Issues}
Stare at bond price time series for a while and you'll quickly discover that every assumption is violated
\begin{enumerate}
\item Brokered trades
\item Jumps
\item Lags
\item Off-market quotes
\item Funding peculiarities
\end{enumerate}
\clearpage
\includegraphics[width=\textwidth]{paired_bonds.png}
\includegraphics[width=\textwidth]{jumpy_bonds.png}
\clearpage
\includegraphics[width=\textwidth]{takeover_bonds.png}
\clearpage
\includegraphics[width=\textwidth]{slowdealer_bonds.png}
\clearpage
\includegraphics[width=\textwidth]{quoted_bonds.png}
\clearpage
\includegraphics[width=\textwidth]{quoted_badly_bonds.png}
\clearpage
\includegraphics[width=\textwidth]{quoted_very_badly_bonds.png}
\clearpage
\includegraphics[width=\textwidth]{cds_driven_bonds.png}
\clearpage
\subsection{Explaining and justifying pricing}
The contemporaneous impact of an observation \(y_{k+1}\) is proportional to the Kalman gain.
\myblue{(I think we knew that already too)}. This creates the pricing narrative.
But most observations are not contemporaneous ...
\subsubsection{Historical importance of observations}
\includegraphics[width=\textwidth]{price_inspector.png}
The derivatives of the Kalman filter estimate with respect to a {\bfseries past} observation \(y_i\) is not something we see too often.
\begin{enumerate}
\item Re-represent the Kalman estimate in the form of a weighted least squares problem (c.f. Duncan Horn representation).
\item Compute sensitivities of the solution of the weighted least squares problem. Sometimes a little adjoint trick helps here.
\end{enumerate}
\clearpage
\subsubsection{Kalman as least squares on the current state}
Sketch: We set up a least squares problem involving the current state \(x_k\) only. The solution to this problem is identical to the Kalman filter's current estimate. This establishes that the current estimate \(\hat{y}_k\) is a simple linear function of the current state \(x_k\), so we can compute the derivative of the current estimate with respect to all previous observations.
\clearpage
To be tidy, assume a gaussian prior on the initial state \(x_0\). To avoid annoying special cases in what follows, we clean up the notation by indexing back to $-1$ as follows:
\begin{eqnarray*}
y_{-1} & = & H_{-1} x_{-1} + \epsilon_{-1} \\
x_0 & = & A_{-1} x_{-1} + u_{-1}
\end{eqnarray*}
and here \(H_{-1}\) and \(A_{-1}\) are identity matrices, \(\epsilon{-1}\) is identically zero, \(y_{-1}\) is set equal to the mean of our prior and \(u_0\) adopts its covariance.
%------------------------------------------------
With the boundary conditions cleaned up in this fashion we can invert the dynamical equations, assuming only that \(A\)'s have left inverses \(A^{-1}\), as follows:
\begin{equation}
x_j = A^{-1}_{j}\left( x_{j+1} - u_j \right)
\end{equation}
and then re-arrange the observation equations so that the only value of \(x_i\) that appears is \(x_k\).
\clearpage
The inversion looks like:
\begin{eqnarray*}
y_k & = & H_k x_{k} + \epsilon_k \\
y_{k-1} & = & H_{k-1} x_{k-1} + \epsilon_{k-1} \\
& = & H_{k-1} \left( A^{-1}_{k-1}\left( x_{k} - u_{k-1} \right) \right) + \epsilon_{k-1} \\
& = & H_{k-1} A^{-1}_{k-1} x_{k} - H_{k-1} A^{-1}_{k-1} u_{k-1} + \epsilon_{k-1} \\
y_{k-2} & = & H_{k-2} x_{k-2} + \epsilon_{k-2} \\
& = & H_{k-2} \left( A^{-1}_{k-2}\left( x_{k-1} - u_{k-2} \right) \right) + \epsilon_{k-2} \\
& = & H_{k-2} A^{-1}_{k-2} x_{k-1} - H_{k-2} A^{-1}_{k-2} u_{k-2} + \epsilon_{k-2} \\
& = & H_{k-2} A^{-1}_{k-2} \left( A^{-1}_{k-1}\left( x_{k} - u_{k-1} \right) \right) - H_{k-2} A^{-1}_{k-2} u_{k-2} + \epsilon_{k-2} \\
& = & H_{k-2} A^{-1}_{k-2} A^{-1}_{k-1} x_{k} - H_{k-2} A^{-1}_{k-2} A^{-1}_{k-1} u_{k-1} - H_{k-2} A^{-1}_{k-2} u_{k-2} + \epsilon_{k-2} \\
& \dots &
\end{eqnarray*}
\clearpage
From which it is apparent that if we write \(Y = (y_k, y_{k-1}, y_{k-2},...,y_{-1} ) \) then
\begin{equation}
Y = G x_{k} + \eta
\end{equation}
where \(G\) is the concatenation of the coefficients of \(x_k\) given above and \(\eta\) is the gaussian random variable equal to the sum of \(u_k\)'s and \(\epsilon_k\)'s.
\myblue{ Thus we have a simple least squares problem for the contemporaneous state $x_k$} which is not dissimilar to the Duncan-Horn representation of the Kalman filter.
\clearpage
\subsubsection{Sensitivities of the least square problem}
Suppose \(x\) solves \(Qx = b(y)\). We wish to compute the derivative of \(g(x)\) w.r.t. y \myblue{ (because, to recap this will tell traders how important every historical observation is to the current price estimate whether or not the observation pertains to a bond in question}).
In particular, if \(y\) is the observation and \(x\) the solution of a generalized least squares problem with error co-variance \(R\) we can cast it in this form by writing:
\begin{eqnarray*}
g(x)& = & H x \\
Q & = & H^T R^{-1} H \\
b(y) & = & H^T R^{-1} y
\end{eqnarray*}
Consider now
\begin{equation}
f(x,y) = 0
\end{equation}
where
\begin{equation}
f(x,y) = Q x - b(y)
\end{equation}
We use derivatives of
\begin{equation}
\tilde{g} = g - \lambda^T f(x,y)
\end{equation}
with respect to \(y\) as a means of computing derivatives of \(g\) with respect to \(y\).
\clearpage
Note that
\begin{equation}
\frac{\partial \tilde{g}}{\partial y} = \frac{\partial g}{\partial x}\frac{\partial x}{\partial y} -
\lambda^T \left( \frac{ \partial f }{\partial x }\frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \right)
\end{equation}
and this will simplify if we choose \(\lambda\) judiciously as a solution of
\begin{equation}
\frac{\partial g}{\partial x } = \lambda^T \frac{\partial f}{\partial x}
\end{equation}
which is the adjoint equation. For then
\begin{eqnarray}
\frac{\partial \tilde{g}}{\partial y} & = & \frac{\partial g}{\partial x}\frac{\partial x}{\partial y} -
\lambda^T \left( \frac{ \partial f }{\partial x }\frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \right) \\
& = & -\lambda^T \frac{\partial f}{\partial y} \\
& = & \lambda^T \frac{\partial b}{\partial y}
\end{eqnarray}
\clearpage
Now specializing to
\begin{equation}
g(x) = H x
\end{equation}
and \(b(y)\) as above we can solve for this convenient choice of \(\lambda\) by writing
\begin{eqnarray}
H & = & \frac{\partial g}{\partial x} \\
& = & \lambda^T \frac{\partial f}{\partial x} \\
& = & \lambda^T Q \\
& = & \lambda^T H^T R^{-1} H
\end{eqnarray}
where the second equality is the adjoint equation. Thus we can compute derivatives of \(\tilde{g}\) with respect to \(y\), and thereby compute derivatives of \(g\) with respect to \(y\) which is what we set out to do.
%------------------------------------------------
\subsection{Accuracy}
At some point you have to explain the accuracy of your prices to clients. On the vendor side it is sometimes argued that customers are insensitive to pricing quality and the service is therefore sticky. This is party true but that argument presumes there will be no material change in market structure or competitive forces. In fact major buy side firms are gearing up to better quantify their \myblue{transaction costs} relative to peers. Others wish to use their inventory to generate \myblue{alpha}. And sell-side firms look for lower cost means of \myblue{making markets} and even \myblue{assessing traders}.
Unfortunately, accuracy is a subtle beast...
\subsubsection{A simple target}
The next inter-dealer trade. Issues:
\begin{enumerate}
\item Rare for many bonds
\item Noisy
\item Repeated
\item Paired
\item Serially correlated
\end{enumerate}
\clearpage
\subsubsection{A time, size and money-under-the-bridge weighted target}
Fix some moment $t$ at which a price is supplied by a vendor and consider the $J$ subsequent inter-dealer trades:
\begin{equation}
FVT(t;J) = \frac{ \sum_{j=1}^{J} p_j s_j e^{-(t_j-t)} e^{-M^-_j} }
{ \sum_{j=1}^{J} s_j e^{-(t_j-t)} e^{-M^-_j} }
\end{equation}
where \(p_j\), \(s_j\) and \(t_j\) are the price, size and time of subsequent inter-dealer trades with time measured in business days and
\begin{equation}
M^{-}_j = \frac{1}{c}\sum_{k=1}^{j-1} s_k
\end{equation}
is the cumulative trading volume up to but not including the trade in question.
\subsubsection{Fixing an inconsistency}
The use of $M^{-}_j$ is slightly unnatural because it means the target is not invariant to splitting of future trades. We can easily fix this, however, by integrating in money instead of time.
$$
FVT'(t;J) = \frac { \int_{m=0}^{M^{+}_J} p(m) e^{-m}e^{-(t(m)-t)} dm }
{ \int_{m=0}^{M^{+}_J} e^{-m}e^{-(t(m)-t)} dm }
$$
where \(M^{+}_J := M^{-}_{J+1}\) is the total amount of money under the bridge up to and including the \(J\)'th trade, \(p(m)\) is the price when \(m\) dollars of trading has occurred, and $t(m)-t$ is the time we have progressed when $m$ dollars of trading has occurred.
\subsubsection{Multivariate filters seemingly perform worse then univariate}
A more serious issue with accuracy measures for bond pricing relates to the inefficiency in the market. One needs to be careful not to reward univariate models (treating only the bond in question) for over-fitting. A stylized simulation to prove the point following West and Papanicoloau can run as follows. Disregard funding rates and use piece-wise hazards:
\begin{equation}
\lambda(t) = \lambda_i, t_{i-1} \le t_{i}
\end{equation}
so that yields
\begin{equation}
y_i = \int_0^{T_i} \lambda(t) dt
\end{equation}
are clearly linear in the hazard rates.
\clearpage
Assume now that hazards are independent random walks
\begin{equation}
\lambda_k(t_dt) = \lambda_k(t) + N(0, dt\sigma_k^2)
\end{equation}
and for simplicity set $\sigma_1=0.1$, $\sigma_2=0.05$ and $\sigma_3=0.01$. Assume bond prices are observed at times generated by a self-exciting Hawkes process:
\begin{equation}
dc_t = (c_t-c)e^{-\kappa t} + f dN_t
\end{equation}
West and Papanicolaou studied various types of bonds based on these parameters. They then used both univariate and multivariate Kalman filters, and also a simple model where the estimate was simply the last trade observation.
\clearpage
\begin{table}
\begin{tabular}{|l|l|l|l|}
\hline
& Last Trade & Univariate K.F. & Multivariate K.F. \\ \hline
Apparent error & 0.020 & 0.0377 & 0.0383 \\ \hline
Actual error & 0.056 & 0.0512 & 0.0286 \\ \hline
\end{tabular}
\caption{Apparent error when measured against the next trade, and actual error against ground truth. In a
simulation the model that simply uses the last trade of the bond in question appears to perform better than the multivariate Kalman filter applied to the entire curve - but that is an illusion. Numbers courtesy of Nick West and George Papanicolaou.}
\end{table}
\clearpage
\subsubsection{Serial correlation distorts accuracy metrics}
A related problem occurs if we assume that trade observations are serially correlated errors with respect to some ground truth. Simple models can over-fit but appear to perform well in simple accuracy statistics.
\myblue{With all that said ...} here is a comparison between the current version of Benchmark, built by A.J. Linderman, Antoine Toussaint et al, and a prominent vendor offering real-time pricing. (We can't compare the original Benchmark pricing service as there were no other real-time services at the time).
\clearpage
\subsubsection{Vendor comparison}
\begin{table}
\begin{tabular}{|l|l|l|l|}
\hline
Time since last trade & Market leader & BMRK & Count \\ \hline
5 - 20 mins & 0.238 & 0.140 & 7,348 \\ \hline
20 mins -2 hr & 0.215 & 0.156 & 9,326\\ \hline
2hr - 4hr & 0.250 & 0.174 & 726 \\ \hline
4hr - 10 hr & 0.217 & 0.159 & 5,931\\ \hline
10hr - 2 days & 0.217 & 0.171 & 2,613 \\ \hline
2 days - 1 week & 0.234 & 0.189 & 4,738 \\ \hline
& & & 30,672 \\ \hline
\end{tabular}
\end{table}
\clearpage
%------------------------------------------------
\thispagestyle{empty} % No slide header and footer
\begin{tikzpicture}[remember picture,overlay] % Background box
\node [xshift=\paperwidth/2,yshift=\paperheight/2] at (current page.south west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=\paperheight/3,top color=mygreen,bottom color=mygreen]{}; % Change the height of the box, its colors and position on the page here
\end{tikzpicture}
% Text within the box
\begin{flushright}
\vspace{0.6cm}
\color{white}\sffamily
{\bfseries\LARGE Questions?\par} % Request for questions text
\vfill
\end{flushright}
%----------------------------------------------------------------------------------------
\end{document}