
Honours Individual Project Dissertation

LEVEL 4 PROJECT REPORT TEMPLATE

John H. Williamson
September 14, 2018

i

Abstract

Every abstract follows a similar pattern. Motivate; set aims; describe work; explain results.

“XYZ is bad. This project investigated ABC to determine if it was better. ABC used XXX and
YYY to implement ZZZ. This is particularly interesting as XXX and YYY have never been used
together. It was found that ABC was 20% better than XYZ, though it caused rabies in half of
subjects.”

i

Acknowledgements

ii

Education Use Consent

Consent for educational reuse withheld. Do not distribute.

iii

Contents

1 Introduction 1
1.1 Guidance 1
1.2 Writing guidance 1

1.2.1 Who is the reader? 1
1.2.2 References and style guides 1
1.2.3 Plagiarism warning 2
1.2.4 Quoting text 2

2 Background 3
2.1 Guidance 3

3 Analysis/Requirements 4
3.1 Guidance 4

4 Design 5
4.1 Guidance 5

5 Implementation 6
5.1 Guidance 6
5.2 General guidance for technical writing 6

5.2.1 Figures 6
5.2.2 Equations 8
5.2.3 Algorithms 8
5.2.4 Tables 8
5.2.5 Code 10

6 Evaluation 11
6.1 Guidance 11
6.2 Evidence 11

7 Conclusion 13
7.1 Guidance 13
7.2 Summary 13
7.3 Reflection 13
7.4 Future work 13

Appendices 14

A Appendices 14

iv

Bibliography 15

1

1 Introduction

TODO: Remove the guidance notes from your dissertation before submitting!
Why should the reader care about what are you doing and what are you actually
doing?

1.1 Guidance

Motivate first, then state the general problem clearly.

1.2 Writing guidance

1.2.1 Who is the reader?

This is the key question for any writing. Your reader:
• is a trained computer scientist: don’t explain basics.
• has limited time: keep on topic.
• has no idea why anyone would want to do this: motivate clearly
• might not know anything about your project in particular: explain your
project.

• but might know precise details and check them: be precise and strive for
accuracy.

• doesn’t know or care about you: personal discussions are irrelevant.
Remember, you will be marked by your supervisor and one or more members
of staff. You might also have your project read by a prize-awarding committee
or possibly a future employer. Bear that in mind.

1.2.2 References and style guides

There are many style guides on good English writing. You don’t need to read
these, but they will improve how you write.

• How to write a great research paper Peyton Jones (2017) (recommended, even
though you aren’t writing a research paper)

2

• How to Write with Style Vonnegut (1980). Short and easy to read. Available
online.

• Style: The Basics of Clarity and Grace Williams and Bizup (2009) A very
popular modern English style guide.

• Politics and the English Language Orwell (1968) A famous essay on effective,
clear writing in English.

• The Elements of Style Strunk and Whyte (2007) Outdated, and American,
but a classic.

• The Sense of Style Pinker (2015) Excellent, though quite in-depth.

Citation styles
• If you are referring to a reference as a noun, then cite it as: “Orwell (1968)
discusses the role of language in political thought.”

• If you are referring implicitly to references, use: “There are many good
books on writing (Orwell 1968; Williams and Bizup 2009; Pinker 2015).”

There is a complete guide on good citation practice by Peter Coxhead available
here: http://www.cs.bham.ac.uk/~pxc/refs/index.html. If you are unsure about
how to cite online sources, please see UNSW (2019). 1

1.2.3 Plagiarism warning

WARNING

If you include material from other sources without full and correct at-
tribution, you are commiting plagiarism. The penalties for plagiarism
are severe. Quote any included text and cite it correctly. Cite all images,
figures, etc. clearly in the caption of the figure.

1.2.4 Quoting text

If you are quoting a long passage, use a quote environment:
If you scribble your thoughts any which way, your readers will surely
feel that you care nothing about them. They will mark you down as an
egomaniac or a chowderhead -or, worse, they will stop reading you.
The most damning revelation you can make about yourself is that you
do not know what is interesting and what is not.

(Vonnegut 1980)
If you are quoting inline, like Simon Peyton-Jones’ following remark, use quota-
tion marks “Conveying the intuition is primary, not secondary” (Peyton Jones
2017).

1Specifying an online resource likehttps://developer.android.com/studio in a footnote sometimes
makes more sense than including it as a formal reference.

http://www.cs.bham.ac.uk/~pxc/refs/index.html
https://developer.android.com/studio

3

2 Background

What did other people do, and how is it relevant to what you want to do?

2.1 Guidance

• Don’t give a laundry list of references.
• Tie everything you say to your problem.
• Present an argument.
• Think critically; weigh up the contribution of the background and put it in
context.

• Don’t write a tutorial; provide background and cite references for further
information.

4

3 Analysis/Requirements

What is the problem that you want to solve, and how did you arrive at it?

3.1 Guidance

Make it clear how you derived the constrained form of your problem via a clear
and logical process.
The analysis chapter explains the process by which you arrive at a concrete design.
In software engineering projects, this will include a statement of the requirement
capture process and the derived requirements.
In research projects, it will involve developing a design drawing on the work
established in the background, and stating how the space of possible projects was
sensibly narrowed down to what you have done.

5

4 Design

How is this problem to be approached, without reference to specific implemen-
tation details?

4.1 Guidance

Design should cover the abstract design in such a way that someone else might
be able to do what you did, but with a different language or library or tool.
This might include overall system architecture diagrams, user interface designs
(wireframes/personas/etc.), protocol specifications, algorithms, data set design
choices, among others. Specific languages, technical choices, libraries and such
like should not usually appear in the design. These are implementation details.

6

5 Implementation

What did you do to implement this idea, and what technical achievements did
you make?

5.1 Guidance

You can’t talk about everything. Cover the high level first, then cover important,
relevant or impressive details.

5.2 General guidance for technical writing

These points apply to the whole dissertation, not just this chapter.

5.2.1 Figures

Always refer to figures included, like Figure 5.1, in the body of the text. Include
full, explanatory captions and make sure the figures look good on the page. You
may include multiple figures in one float, as in Figure 5.2, using subcaption,
which is enabled in the template.

d

a

Zj

Figure 5.1: In figure captions, explain what the reader is looking at: “A schematic of the rectifying linear
unit, where a is the output amplitude, d is a configurable dead-zone, and Z j is the input signal”, as well as
why the reader is looking at this: “It is notable that there is no activation at all below 0, which explains
our initial results.” Use vector image formats (.pdf) where possible. Size figures appropriately, and do
not make them over-large or too small to read.

7

(a) Synthetic image, black on white. (b) Synthetic image, white on black.

Figure 5.2: Synthetic test images for edge detection algorithms. (a) shows various gray levels that require
an adaptive algorithm. (b) shows more challenging edge detection tests that have crossing lines. Fusing these
into full segments typically requires algorithms like the Hough transform. This is an example of using
subfigures, with subrefs in the caption.

8

5.2.2 Equations

Equations should be typeset correctly and precisely. Make sure you get parenthe-
sis sizing correct, and punctuate equations correctly (the comma is important and
goes inside the equation block). Explain any symbols used clearly if not defined
earlier.
For example, we might define:

f̂ (ξ) =
1
2

[∫ ∞

−∞

f (x)e2πixξ
]
, (5.1)

where f̂ (ξ) is the Fourier transform of the time domain signal f (x).

5.2.3 Algorithms

Algorithms can be set using algorithm2e, as in Algorithm 1.

Data: fX (x), a probability density function returing the density at x .
σ a standard deviation specifying the spread of the proposal distribution.
x0, an initial starting condition.
Result: s = [x1,x2, . . . ,xn], n samples approximately drawn from a distribution with PDF fX (x).
begin

s ←− []
p ←− fX (x)
i ←− 0
while i < n do

x ′ ←−N(x ,σ2)
p′ ←− fX (x

′)

a ←−
p′
p

r ←− U (0, 1)
if r < a then

x ←− x ′

p ←− fX (x)
i ←− i + 1
append x to s

end
end

end
Algorithm 1: The Metropolis-Hastings MCMC algorithm for drawing samples from arbitrary
probability distributions, specialised for normal proposal distributions q(x ′ |x) = N(x ,σ 2). The
symmetry of the normal distribution means the acceptance rule takes the simplified form.

5.2.4 Tables

If you need to include tables, like Table 5.1, use a tool like https://www.tablesgenerator.com/
to generate the table as it is extremely tedious otherwise.

9

Table 5.1: The standard table of operators in Python, along with their functional equivalents from the
operator package. Note that table captions go above the table, not below. Do not add additional
rules/lines to tables.

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test obj in seq contains(seq, obj)
Division a / b div(a, b)
Division a / b truediv(a, b)
Division a // b floordiv(a, b)
Bitwise And a & b and_(a, b)
Bitwise Exclusive Or a ^b xor(a, b)
Bitwise Inversion ∼a invert(a)
Bitwise Or a | b or_(a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is_(a, b)
Identity a is not b is_not(a, b)
Indexed Assignment obj[k] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[k] getitem(obj, k)
Left Shift a <<b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Positive + a pos(a)
Right Shift a >>b rshift(a, b)
Sequence Repetition seq * i repeat(seq, i)
Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values)
Slice Deletion del seq[i:j] delitem(seq, slice(i, j))
Slicing seq[i:j] getitem(seq, slice(i, j))
String Formatting s % obj mod(s, obj)
Subtraction a - b sub(a, b)
Truth Test obj truth(obj)
Ordering a <b lt(a, b)
Ordering a <= b le(a, b)

10

def create_callahan_table(rule="b3s23"):
"""Generate the lookup table for the cells."""
s_table = np.zeros((16, 16, 16, 16), dtype=np.uint8)
birth, survive = parse_rule(rule)

generate all 16 bit strings
for iv in range(65536):

bv = [(iv >> z) & 1 for z in range(16)]
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p = bv

compute next state of the inner 2x2
nw = apply_rule(f, a, b, c, e, g, i, j, k)
ne = apply_rule(g, b, c, d, f, h, j, k, l)
sw = apply_rule(j, e, f, g, i, k, m, n, o)
se = apply_rule(k, f, g, h, j, l, n, o, p)

compute the index of this 4x4
nw_code = a | (b << 1) | (e << 2) | (f << 3)
ne_code = c | (d << 1) | (g << 2) | (h << 3)
sw_code = i | (j << 1) | (m << 2) | (n << 3)
se_code = k | (l << 1) | (o << 2) | (p << 3)

compute the state for the 2x2
next_code = nw | (ne << 1) | (sw << 2) | (se << 3)

get the 4x4 index, and write into the table
s_table[nw_code, ne_code, sw_code, se_code] = next_code

return s_table

Listing 5.1: The algorithm for packing the 3 × 3 outer-totalistic binary CA successor rule into a
16 × 16 × 16 × 16 4 bit lookup table, running an equivalent, notionally 16-state 2 × 2 CA.

5.2.5 Code

Avoid putting large blocks of code in the report (more than a page in one block,
for example). Use syntax highlighting if possible, as in Listing 5.1.

11

6 Evaluation

How good is your solution? How well did you solve the general problem, and
what evidence do you have to support that?

6.1 Guidance

• Ask specific questions that address the general problem.
• Answer them with precise evidence (graphs, numbers, statistical analysis,
qualitative analysis).

• Be fair and be scientific.
• The key thing is to show that you know how to evaluate your work, not
that your work is the most amazing product ever.

6.2 Evidence

Make sure you present your evidence well. Use appropriate visualisations, report-
ing techniques and statistical analysis, as appropriate. The point is not to dump
all the data you have but to present an argument well supported by evidence
gathered.
If you use numerical evidence, specify reasonable numbers of significant digits;
don’t state “18.41141% of users were successful” if you only had 20 users. If you
average anything, present both a measure of central tendency (e.g. mean, median)
and a measure of spread (e.g. standard deviation, min/max, interquartile range).
You can use siunitx to define units, space numbers neatly, and set the precision
for the whole LaTeX document.
For example, these numbers will appear with two decimal places: 3.14, 2.72, and
this one will appear with reasonable spacing 1 000 000.
If you use statistical procedures, make sure you understand the process you are
using, and that you check the required assumptions hold in your case.
If you visualise, follow the basic rules, as illustrated in Figure 6.1:

• Label everything correctly (axis, title, units).
• Caption thoroughly.

12

• Reference in text.
• Include appropriate display of uncertainty (e.g. error bars, Box plot)
• Minimize clutter.

See the file guide_to_visualising.pdf for further information and guid-
ance.

3mm 12mm 24mm 3mm 12mm 24mm 3mm 12mm 24mm 3mm 12mm 24mm

Actual fingers / z distance

0

1

2

3

4

5

M
ea

n
fi

n
ge

rs
d

et
ec

te
d

(p
er

-g
es

tu
re

)

1

2

3

5

Figure 6.1: Average number of fingers detected by the touch sensor at di�erent heights above the surface,
averaged over all gestures. Dashed lines indicate the true number of fingers present. The Box plots include
bootstrapped uncertainty notches for the median. It is clear that the device is biased toward undercounting
fingers, particularly at higher z distances.

13

7 Conclusion

Summarise the whole project for a lazy reader who didn’t read the rest (e.g. a
prize-awarding committee). This chapter should be short in most dissertations;
maybe one to three pages.

7.1 Guidance

• Summarise briefly and fairly.
• You should be addressing the general problem you introduced in the Intro-
duction.

• Include summary of concrete results (“the new compiler ran 2x faster”)
• Indicate what future work could be done, but remember: you won’t get
credit for things you haven’t done.

7.2 Summary

Summarise what you did; answer the general questions you asked in the intro-
duction. What did you achieve? Briefly describe what was built and summarise
the evaluation results.

7.3 Reflection

Discuss what went well and what didn’t and how you would do things differently
if you did this project again.

7.4 Future work

Discuss what you would do if you could take this further – where would the
interesting directions to go next be? (e.g. you got another year to work on it, or
you started a company to work on this, or you pursued a PhD on this topic)

14

A Appendices

Use separate appendix chapters for groups of ancillary material that support your
dissertation. Typical inclusions in the appendices are:

• Copies of ethics approvals (you must include these if you needed to get
them)

• Copies of questionnaires etc. used to gather data from subjects. Don’t
include voluminous data logs; instead submit these electronically alongside
your source code.

• Extensive tables or figures that are too bulky to fit in the main body of the
report, particularly ones that are repetitive and summarised in the body.

• Outline of the source code (e.g. directory structure), or other architecture
documentation like class diagrams.

• User manuals, and any guides to starting/running the software. Your equiv-
alent of readme.md should be included.

Don’t include your source code in the appendices. It will be submitted sepa-
rately.

15

Bibliography

Orwell, G. (1968), Politics and the English language, in ‘The collected essays,
journalism and letters of George Orwell’, Harcourt, Brace, Javanovich, pp. 127–
140.

Peyton Jones, S. (2017), How to write a great research paper, in ‘2017 Imperial
College Computing Student Workshop, ICCSW 2017, September 26-27,
2017, London, UK’, pp. 1:1–1:1.

Pinker, S. (2015), The sense of style: The thinking person’s guide to writing in the 21st
century, Penguin Books.

Strunk, W. and Whyte, E. (2007), The Elements of style, Penguin.

UNSW (2019), ‘How do i cite online sources?’, https://student.unsw.edu.au/
how-do-i-cite-electronic-sources. Last accessed: 2019-02-27.

Vonnegut, K. (1980), How to write with style, International Paper Company.

Williams, J. M. and Bizup, J. (2009), Style: the basics of clarity and grace, Pearson
Longman.

https://student.unsw.edu.au/how-do-i-cite-electronic-sources
https://student.unsw.edu.au/how-do-i-cite-electronic-sources

	Introduction
	Guidance
	Writing guidance
	Who is the reader?
	References and style guides
	Plagiarism warning
	Quoting text

	Background
	Guidance

	Analysis/Requirements
	Guidance

	Design
	Guidance

	Implementation
	Guidance
	General guidance for technical writing
	Figures
	Equations
	Algorithms
	Tables
	Code

	Evaluation
	Guidance
	Evidence

	Conclusion
	Guidance
	Summary
	Reflection
	Future work

	Appendices
	Appendices
	Bibliography

