UiO : Department of Mathematics University of Oslo

Author

Title

Choose a course

Supervisor: Supervisor

Abstract

Brief summary of the paper.

Abstract

1 Introduction

Purpose of the paper, historical context, necessary background information and notation.

2 Body of the Work

Full proofs, numerical implementations. Remember to cite your sources, such as Hel17.

Theorem 2.1 (Pythagoras). In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. That is,

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1}
\end{equation*}
$$

where c is the length of the hypotenuse and a and b are the lengths of the two other sides.

Proof. Draw a figure.

3 Conclusions

Optional. Results, consequences, future work.
Table 1 lists some integers satisfying Equation (1) of Theorem 2.1

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
3	4	5
65	72	97

Table 1: Some interesting numbers

References

[Hel17] Helsø, M. Rational Quartic Symmetroids. Aug. 2017. arXiv: 1708. 04101

