THE TITLE OF YOUR THESIS OR DISSERTATION GOES IN THIS SPACE TO LET US KNOW WHAT YOUR DOCUMENT IS ABOUT

A Thesis

by

AGGIE M. STUDENT

Submitted to the Graduate and Professional School of Texas A\&M University
 in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Chair of Committee, Chair Name
Committee Members, Committee Member 1
Committee Member 2
Committee Member 3
Head of Department, Head of Department

December 2021

Major Subject: Mathematics

Abstract

This is the first numbered page, lower case Roman numeral (ii). Page numbers are outside the prescribed margins, at the bottom of the page and centered; everything else is inside the margins.No bold on this page except the heading ABSTRACT if all major headings are bold. This ${ }^{A T} T_{E} X$ template applies to this exception).

Text begins two double spaces below the major heading. The Abstract should be no more than 350 words. Vertical spacing is double spaced. (This $E T E_{E} X$ template applies double space for this ABSTRACT.) The margin settings and text alignment should be consistent throughout the document. There should be no numbered references or formal citations in ABSTRACT.

The content of this ABSTRACT provides a complete, short snapshot of the research, addressing the purpose, methods, results, and conclusions of the document. As a result, it should stand alone without any formal citations or references to chapters/sections of the work. To accommodate with a variety of online database, images, complex equations, or Greek letters/symbols should also be avoided.This should be no longer than 350 words.

The next pages are Dedication, Acknowledgments, Contributors and Funding Sources, and Nomenclature. Contributors and Funding Sources is required, the rest are optional.

DEDICATION

To my mother, father, grandfather, and grandmother. I'm filling in more space so that this extends to the next line.

ACKNOWLEDGMENTS

This section is also optional, and limited to four pages. It must follow the Dedication Page (or Abstract, if there's no Dedication). If listing preliminary pages in Table of Contents, include Acknowledgments. This heading (ACKNOWLEDGMENTS) is bold if major headings are bold. It should be in same type size and style as text. As does the vertical spacing, paragraph style, and margins.

I would like to thank the Texas A\&M University Graduate and Professional School to allow me to construct this $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ thesis template.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Professor Jane Doe [advisor - also note if co-advisor] and John Doe of the Department of [Home Department] and Professor(s) XXXX of the Department of [Other Department].

The data analyzed for Chapter IV was provided by Professor Thompson. The analyses depicted in Chapter X were conducted in part by Daniel James of the Department of Statistics and were published in (2004) in an article listed in the Journal of Things.

All other work conducted for the thesis (or) dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A\&M University and a dissertation research fellowship from That Foundation. OR No other outside source of funding was provided. One or the other must be stated.

OGAPS	Office of Graduate and Professional Studies at Texas A\&M University
B/CS	Bryan and College Station
TAMU	Texas A\&M University
SDCC	San Diego Comic-Con
EVIL	Every Villain is Lemons
EPCC	Educator Preparation and Certification Center at Texas A\&M University - San Antonio
FFT	Fast Fourier Transform
ARIMA	Autoregressive Integrated Moving Average
SSD	Solid State Drive
HDD	Hard Disk Drive
O\&M	Eller Oceanography and Meteorology Building
DOS	Disk Operating System
HDMI	High Definition Multimedia Interface
L^{1}	Space of absolutely Lebesgue integrable functions; i.e. $\int\|f\|<\infty$
L^{2}	Space of square-Lebesgue-integrable functions, i.e., $\int\|f\|^{2}$ ∞
$P C(S)$	Space of piecewise-continuous functions on S
GNU	GNU is Not Unix
GUI	Graphical User Interface
PID	Principal Integral Domain
MIP	Mixed Integer Program

LP Linear Program

TABLE OF CONTENTS

Page

ABSTRACT ii
DEDICATION iii
ACKNOWLEDGMENTS iv
CONTRIBUTORS AND FUNDING SOURCES v
NOMENCLATURE vi
TABLE OF CONTENTS viii
LIST OF FIGURES X
LIST OF TABLES xii

1. INTRODUCTION AND LITERATURE REVIEW 1
1.1 Author's Message to the Student Using This Template For Their Thesis or Disser- tation 1
1.1.1 Brief Usage of the Template 1
1.1.2 How to Fill This Document 2
1.1.3 Reference Usage and Example 2
1.1.4 Equations, Formulas, and Other Really Cool Math Things That LETEX Can Do 3
1.1.5 A Test Section 4
1.2 Specifications in This TAMU LATEX Template 4
1.2.1 Another Test Section 5
1.2.1.1 Test 5
1.2.1.2 Test 2 6
1.2.2 Yet Another One 6
1.2.3 No Surprises Here 8
2. PAGES WITH A FIGURE, A TABLE AND AN EQUATION 9
2.1 Figures: Placement, Size, and Captions 9
2.2 Table Placement, Size and Table Title 12
2.3 Equations 13
2.4 Theorems and Proofs: Examples 14
2.5 Another Table Example 15
3. VERY, VERY, VERY LONG TITLE THAT FLOWS INTO A SECOND LINE FOR THE SAKE OF EXAMPLE 17
3.1 Yet Another Table 17
3.2 Section Test Example 18
3.2.1 Filler, Filler, Filler 18
3.2.2 Subsection Test Example 20
3.2.3 Subsection Test Example 2 20
3.2.4 Section Summary 20
3.3 Section Test Example 3 21
3.3.1 Subsection Test 1 22
3.3.2 Subsection Test 2 22
4. SUMMARY AND CONCLUSIONS 23
4.1 Challenges 28
4.2 Further Study 28
APPENDIX A. FIRST APPENDIX 29
APPENDIX B. THIS TITLE IS MUCH LONGER THAN THE FIRST AND EXTENDS ALL THE WAY TO THE NEXT LINE 30
B. 1 Appendix Section 30
B. 2 Second Appendix Section 30
REFERENCES 29

LIST OF FIGURES

FIGURE

Page
1.1 Some Haskell code in a compiler 4
1.2 The DOSBox console running in Windows 7. The contents of the mounted direc- tory C : are displayed, with the active subdirectory DUKE3D 5
1.3 The inclusion of a copyright statement as a footnote. The lines in yellow help to change to footnote marking scheme 5
1.4 Linux Mint 13 with the XFCE desktop environment 6
1.5 The "Table of Contents" dialog box in Microsoft Word. This must be accessed to properly generate the Table of Contents when using the Recommended Template 7
1.6 Linear regression on three (top) and four (bottom) independent variables in base R 8
2.1 The command line compiler in Windows 9
2.2 A typical desktop space in Linux Mint. 10
2.3 The autocorrelation function (ACF) of the differenced unemployment series. Sea- sonal adjustments may be needed. 11
2.4 The Linux terminal. The commands shown are from a two-dimensional mesh gen- erator that triangulates a domain in the plane. Files containing nodes, elements, the polygon, and the edges are created. 12
2.5 A blank float. 16
2.6 Another blank float 16
3.1 A low pass filter design. 18
3.2 A typical Texmaker workspace in Windows 7. The right sidebar displays the cur- rent file's structure according to the subsections in place 19
3.3 Some commands in R. 19
3.4 The logo of a familiar university. 20
3.5 Yet another blank float that has no purpose. This is only to test the appearance of the Lists of Figures and the List of Tables. 21
3.6 A signal and the result after a basic filter. The FFT was used to create the plot on the right. 21
3.7 There is nothing to see here 21
3.8 There is another float here. I wonder what could be here? Guess what? Nothing! There is no material in this float. 21
4.1 Declaring graphics directories. 23
4.2 The place to declare any packages you require that I have not already declared. This simplifies debugging. 24
4.3 Two points on the unit circle and their corresponding position vectors 25
4.4 Changing the method of compilation for XeLaTeX in TeXstudio. 26
4.5 A portion of the changelog in the README for this document. This is located in the root directory. 27
A. 1 TAMU figure 29
B. 1 Another TAMU figure 30

LIST OF TABLES

TABLE Page
2.1 Scores from the 2011 Arcadia Festival of Bands. 12
2.2 Some major universities and their fall 2015 enrollments. 16
3.1 San Japan attendance. Data is taken from [?]. I intentionally make the title of this table long so the single space effect is seen in the list of tables.17

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Author's Message to the Student Using This Template For Their Thesis or Dissertation

Howdy! This is the template for theses and dissertations written using $\mathrm{LT}_{\mathrm{E}} \mathrm{Xfor}$ submission at Texas A\&M University. The Graduate and Professional School (GPS) is here to guide you in submitting your thesis or dissertation and can help you with questions about that process. This template shows the many features of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, with many more available to the user.

There are numerous guides, references, and tutorials available on the Internet to help you. If you are stuck, don't be afraid to Google your issue, or you can contact Overleaf at welcome@ overleaf.com. If you have questions about submitting or processing your document you can email the Thesis Office at thesis@tamu.edu

1.1.1 Brief Usage of the Template

This template is intended for use by STEM 1 students. If you are not a STEM student, this template is likely not for you.If you are not familiar with LaTeX, now is not the best time to learn.

The advantage of using this template over the Microsoft Word templates are numerous. First, there is a lot of control granted to the user in how the document looks. Of course, you are expected to still follow the guidelines set forth in the TAMU Thesis Manual. This template takes care of the margins, heading requirements, and orders the front matter for you.

Software to Install

MikTeX or ProTeXt is the free software recommended for Windows PC users to compile your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document. To compile for this document, XeLaTeX compiling engine is used. There is currently an issue in which the package xetex-def does not install; see the file README.txt for a solution. Another software called JabRef is also recommended for bibliography/reference management; its usage is similar with EndNote.

[^0]
Procedure to Compile IATEX Document

This template (and consequently, your document) will be compiled using XeLaTeX. To compile your document, do the following ${ }^{2}$:

- In TeXstudio, go to the Tools menu, then select Commands, and click XeLaTeX.
- In Texmaker, go to the Tools menu and select XeLaTeX.
- For other editors, consult the help files included with the editor.

To view the output after the program is done compiling, press F7 in TeXstudio and TeXmaker or the appropriate hotkey for other editors. Be sure that the document is not open in another PDF reader, for your editor will not display it.

1.1.2 How to Fill This Document

The document structure is organized in the main .tex file, TAMUTemplate.tex, which has the same name as the output PDF file. Content in each section is in the data folder. You can open the .tex files under the data folder to modify. Four sections are added initially. To add in more sections into the $\mathrm{IT}_{\mathrm{E}} \mathrm{Xd}$ document, open the TAMUTemplate.tex file and go to line $\mathbf{1 3 0}$ you can just delete the content in the data folder and fill your documents and then compile under TAMUTemplate.tex.)

1.1.3 Reference Usage and Example

Here we test the usage of references. The book[?] is referred in this way. Actually, the option is available for you to change the default way how reference appears. The default and most commonly used option [?] is displayed here [?].Both of these options are acceptable.

Unrelated citations are referred here for the test of reference section only[?]. If you find that the reference [?] has more items than you need [?], question marks will show up in place of a reference handle, like these [?].

[^1]
1.1.4 Equations, Formulas, and Other Really Cool Math Things That IETEX Can Do

Equations can be written in $\mathrm{EATE}_{\mathrm{E}} \mathrm{X}$ in one of two ways. First, you can have material displayed inline by enclosing the desired statement in dollar signs. For example, $e^{i \pi}+1=0$ is an inline math expression. Some longer expressions, especially those including sums, integrals, or large operators and objects can be displayed centered on their own line. In this math mode, you enclose the desired material in square brackets. For example,

$$
\sum_{j=1}^{n} \int f_{j} d x=\int \sum_{j=1}^{n} f_{j} d x
$$

is a math mode expression. We can also have a series of expressions aligned at a symbol. This is particularly useful when you are showing details in solving an equation or evaluating an integral. The next block shows off the align* environment. We use it here to show a distributive property of set intersections over unions. Observe how each line is aligned to the biconditional symbol. This makes reading steps easier, since a reader can go line by line and determine why each step is justified.

$$
\begin{aligned}
x \in A \cap \bigcup_{j} B_{j} & \Longleftrightarrow x \in A \wedge x \in \bigcup_{j} B_{j} \\
& \Longleftrightarrow x \in A \wedge x \in B_{k} \text { for some } \mathrm{k} \\
& \Longleftrightarrow x \in \bigcup_{j} A \cap B_{j}
\end{aligned}
$$

There are many more commands and features available, but this document is too small to contain them. ${ }^{3}$ Many guides are available on the Internet for your use.

[^2]
1.1.5 A Test Section

This is just a test.This is what a subsection looks like. Below is a figure displaying some Haskell code in a compiler.

Figure 1.1: Some Haskell code in a compiler.

This template has been designed for use in modern systems, but can perhaps be adapted to work on older systems, such as Windows 95. Below is a screenshot of a DOSBox console, an MS-DOS emulator designed to work on several platforms. Windows 95 can be installed into DOSBox, but it is not suggested.

1.2 Specifications in This TAMU ETEX Template

All requirements for theses can be found in the most recent version of the Thesis Manual, available at the GPS website. The Thesis Office will be happy to assist you if you have questions about specific formatting. Questions specific to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ should be directed to welcome@overleaf. com.

A copyright statement at the beginning of a section with reprinted material from a previously

Figure 1.2: The DOSBox console running in Windows 7. The contents of the mounted directory C : are displayed, with the active subdirectory DUKE3D.
printed source is required. The screenshot below describes how to achieve this. Check the instruction files for more details.


```
%%%%%% SECTION II
```



```
I
\renewcommand*{\thefootnote}{\fnsymbol{footnote}}
\chapter[PAGES WITH A FIGURE, A TABLE AND AN EQUATION]{PAGES WITH A FIGURE, A TABLE AND AN EQUATION
\ootnote{I am allowed to do this}}
\renewcommand*{\thefootnote}{\arabic{footnote}}
```

Figure 1.3: The inclusion of a copyright statement as a footnote. The lines in yellow help to change to footnote marking scheme.

1.2.1 Another Test Section

There should be things here.

1.2.1.1 Test

Hello, is it me you're looking for?

1.2.1.2 Test 2

There are more things to do.

1.2.2 Yet Another One

We insert a slew of figures in the remainder of the document to test the look of the List of Figures.

Figure 1.4: Linux Mint 13 with the XFCE desktop environment.

These are more figures.

Figure 1.5: The "Table of Contents" dialog box in Microsoft Word. This must be accessed to properly generate the Table of Contents when using the Recommended Template.

Yet another figure follows - the last for this section.

$\mathbb{R} R$ Console	$\square \square$
Residual standard error: 1.638 on 18 degrees of freedom	-
Multiple R-squared: 0.9593 , Adjusted R-squared: 0.9548	
F-statistic: 212.2 on 2 and 18 DF, p-value: $3.06 \mathrm{e}-13$	
> my. $\mathrm{lm} 3<-\mathrm{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3)$	
> summary (my.lm3)	
Call:	
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3$)	
Residuals:	
Min 1Q Median 3Q Max	
$\begin{array}{lllll}-2.0667 & -1.1143 & -0.2870 & 0.6246 & 2.9879\end{array}$	
Coefficients:	
Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
$\begin{array}{lllll}\text { (Intercept) } & 0.49543 & 1.21563 & 0.408 & 0.68869\end{array}$	
x 13.415771 .079093 .1650 .00565 **	
$\begin{array}{llllll}\mathrm{x} 2 & -0.23395 & 0.25440 & -0.920 & 0.37065\end{array}$	
$\begin{array}{llllll}\mathrm{x} 3 & 0.01483 & 0.01670 & 0.888 & 0.38712\end{array}$	

Signif. codes: 0 ,***r 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1	
Residual standard error: 1.648 on 17 degrees of freedom	
Multiple R-squared: 0.9611, Adjusted R-squared: 0.9542	
F-statistic: 140 on 3 and 17 DF , p-value: $3.48 \mathrm{e}-12$	
> my. $\operatorname{lm} 4<-\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4)$	
$>$ summary (my.lm4)	
Call:	
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4)$	
Residuals:	
$\begin{array}{lllll}-2.1113 & -1.1143 & -0.1320 & 0.4295 & 3.1429\end{array}$	
Coefficients:	
Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
$\begin{array}{lllll}\text { (Intercept) } & 0.789834 & 1.421428 & 0.556 & 0.586\end{array}$	
$\begin{array}{llllll}\mathrm{x} 1 & 2.661264 & 2.073355 & 1.284 & 0.218\end{array}$	
$\begin{array}{lllll}\mathrm{x} 2 & 0.125075 & 0.874299 & 0.143 & 0.888\end{array}$	E
$\begin{array}{lllll}\mathrm{x} 3 & -0.041887 & 0.132935 & -0.315 & 0.757\end{array}$	
$\begin{array}{llllll}\mathrm{x} 4 & 0.002836 & 0.006591 & 0.430 & 0.673\end{array}$	
Residual standard error: 1.689 on 16 degrees of freedom	
Multiple R-squared: 0.9616, Adjusted R-squared: 0.9519	
F-statistic: 100 on 4 and 16 DF , p-value: $4.149 \mathrm{e}-11$	
>	
\&	,

Figure 1.6: Linear regression on three (top) and four (bottom) independent variables in base R.

1.2.3 No Surprises Here

Insert another song lyric here.

2. PAGES WITH A FIGURE, A TABLE AND AN EQUATION

2.1 Figures: Placement, Size, and Captions

This is a figure template.

Figure 2.1: The command line compiler in Windows. It is not suggested that you compile using this method. See compilation instructions in the README.

Figure (and table) titles should be consistent through the document. All captions should be placed either above or below the object it describes. This is done by placing the caption in the correct place. While continued figures are allowed by the Thesis Manual, it is not suggested that any continued figures be included in a LTEX document. The figure below is from Linux Mint, showing a portion of a desktop.

Figure 2.2: A typical desktop space in Linux Mint.

The figure below is taken from R. While there are packages available to import graphics from R, MATLAB, and similar software, it is probably best to export plots generated by these programs as a PNG file, and then import it via the includegraphics command.

Figure 2.3: The autocorrelation function (ACF) of the differenced unemployment series. Seasonal adjustments may be needed.

It is suggested that you scale the figures so they fit within the margins. Almost all the figures included in this document for the sake of example have been scaled. It is best to use PNG and JPEG files as figures.

The last figure here is a screenshot from the Linux terminal.

Figure 2.4: The Linux terminal. The commands shown are from a two-dimensional mesh generator that triangulates a domain in the plane. Files containing nodes, elements, the polygon, and the edges are created.

2.2 Table Placement, Size and Table Title

Here is a table, displaying band and auxiliary scores from the 2011 Arcadia Festival of Bands held in Arcadia, CA [?].

School Name	Band Score	Auxiliary Score
Rancho Bernardo	96.15	89.15
Mt. Carmel	95.30	83.55
Riverside King	93.85	91.75
Diamond Bar	93.20	88.60
El Dorado	92.80	95.45
Chino	92.65	91.45
Henry J. Kaiser	92.60	87.55
Glendora	92.60	89.15
Montebello	90.50	82.70
Mira Mesa	89.65	91.50

Table 2.1: Scores from the 2011 Arcadia Festival of Bands.

The table is sorted by band score. There is more text here to demonstrate how the template handles spacing between tables and body text. Also note how the table caption is in a smaller font size than the body text.Text in the captions and appendices can be no smaller than size 7 .

2.3 Equations

The following format is recommended to be used to display equations.

$$
\begin{gather*}
y=c_{1} \cos (t)+c_{2} \sin (t) \tag{2.1}\\
e^{i t}=\cos (t)+i \sin (t) \tag{2.2}
\end{gather*}
$$

Equation 2.1 is the general solution to the differential equation $y^{\prime \prime}+y=0$. In the source code, the ref command allows you to refer to an equation by a label you created. References must be made after the equation has been created; attempting to refer to an equation before it is defined results in a question mark placeholder. Some more sample equations are below. Notice the first set below is not numbered.

$$
\begin{gather*}
\log \left(x^{n}\right)=\log (x \cdot x \cdot \ldots \cdot x) \\
=\log x+\log x+\ldots+\log x \\
=n \log x \\
X^{T} X \mathbf{u}=X^{T} \mathbf{y} \tag{2.3}\\
u(x, t)=\int_{-\infty}^{\infty} G(x, \tau) \exp \left(-\frac{(t-\tau)^{2}}{4 k t}\right) d \tau \tag{2.4}\\
\mathcal{L}(f)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{2.5}\\
\mathcal{F}(f)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} f(x) d x \tag{2.6}
\end{gather*}
$$

You can use labels to refer to equations you create. 2.6 is the Laplace transform used exten-
sively in differential equations. 2.3 is the matrix representation of the normal equations used in least-squares regression.

To have equations without labels appearing the right margin, simply add an asterisk to the name of the environment (equation, align, etc.) when making the declaration.

2.4 Theorems and Proofs: Examples

This section will show an example usage of the theorem and proof environments, typically used for mathematics students. To use these environments, you must have the package amsthm declared in the preamble of your document. For this template, this is already declared in the main file. You may choose to remove this declaration if your document will not make use of theorems and proofs.

Theorems can be numbered, as the one below is, or you can force a different label to appear. For example, you can state the Bolzano-Weierstass theorem and have the names appear as the theorem label. See the examples below.

Sometimes you may have a theorem with multiple parts or multiple conditions. You can use other list environments, such as enumerate, inside the theorem environment declared to list these conditions. The final example at the end of this block shows this with the Invertible Matrix Theorem, which has several equivalent statements.

Theorem 1. Suppose f is of class \mathcal{C}^{1} and g is of class \mathcal{C}^{2}, and that the compact set D and its boundary satisfy the hypotheses of Green's Theorem. Then

$$
\iint_{D} f \nabla^{2} g d A=\oint_{\partial D} f(\nabla g) \cdot \mathbf{n} d s-\iint_{D} \nabla f \cdot \nabla g d A .
$$

Proof. Begin with the integral of $f \nabla g \cdot n$ taken over the boundary of D. By the second vector form
of Green's Theorem,

$$
\begin{aligned}
\oint_{\partial D} f \nabla g \cdot n d s & =\iint_{D} \nabla \cdot(f \nabla g) d A \\
& =\iint_{D} f \nabla^{2} g+\nabla f \cdot \nabla g d A .
\end{aligned}
$$

Rearranging yields the desired.
Theorem 2 (Bolzano-Weierstrass). Every bounded real sequence has a convergent subsequence.
Theorem 3 (Invertible Matrix Theorem ${ }^{1}$). For any square matrix A with n rows and columns, the following are equivalent.

1. A is invertible.
2. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
3. For any nonzero $\mathbf{b}, A \mathbf{x}=\mathbf{b}$ has exactly one solution.
4. The columns of A form a linearly independent set.
5. Zero is not an eigenvalue of A.
6. A has full rank.
7. The determinant of A is not zero.

There is currently no set format on how propositions and theorems should be laid out in the document. The idea is to remain consistent. It is best to not customize the appearance of theorems so that they can easily be distinguished from body text - just like figures, tables, and headings.

2.5 Another Table Example

For the sake of testing the appearance of the list of tables, a second table will be displayed here. This table displays a list of some major universities and their enrollments during fall 2015. This table is sorted in descending order of enrollment.

[^3]| School | City and State | Fall 2015 Enrollment |
| :--- | :--- | :--- |
| Texas A\&M University 2 | College Station, TX | 64,376 |
| Ohio State University 3 | Columbus, OH | 58,322 |
| Iowa State University | Ames, IA | 36,001 |
| University of California, San Diego | La Jolla, CA | 33,735 |
| University of West Florida | Pensacola, FL | 12,798 |
| Massachusetts Institute of Technology | Cambridge, MA | 11,319 |

Table 2.2: Some major universities and their fall 2015 enrollments.

Naturally, tables and footnotes do not go together. If you attempted to write a footnote inside a table, there will be nothing at the bottom of the page, yet the footnote marker will still appear. To remedy this, the footnote package has been loaded from the mdwtools package. Check your TeX distribution to see if $m d w t o o l s$ is installed. See the source code for how this is implemented.

Here are some blank floats.

Figure 2.5: A blank float.

Figure 2.6: Another blank float.

[^4]
3. VERY, VERY, VERY LONG TITLE THAT FLOWS INTO A SECOND LINE FOR THE SAKE OF EXAMPLE

Notice that the title of this section is long - much longer than the others. When you have long section titles, this template takes care of double spacing the lines in the title. If the title is long to fit in the table of contents, the template will single space the title.

3.1 Yet Another Table

Another table is placed here to show the effect of having tables in multiple sections. The list of tables should still double space between table titles, while single spacing long table titles.

Dates	Attendance
August 8-10, 2008	3,523
August 14-16, 2009	4,003
July 9-11, 2010	5,049
August 5-7, 2011	6,891
August 10-12, 2012	9,464
August 16-18, 2013	11,077
July 18-20, 2014	14,686
July 31-August 2, 2015	18,411

Table 3.1: San Japan attendance. Data is taken from [?]. I intentionally make the title of this table long so the single space effect is seen in the list of tables.

You may be wondering why San Japan was chosen. There are a few reasons as to why I did this:

1. It is one of the fastest-growing anime conventions in Texas.
2. Filler.
3. I wanted a good variety of table examples.
4. Because conventions are cool.

The enumerate environment was used to generated an ordered list above.

3.2 Section Test Example

We insert another figure here, just for kicks.

Figure 3.1: A low pass filter design.

3.2.1 Filler, Filler, Filler

This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a

Figure 3.2: A typical Texmaker workspace in Windows 7. The right sidebar displays the current file's structure according to the subsections in place.
few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

```
\mathbb{R}R\mathrm{ R Console }
> y 
> > y [1] 1.12 0.08 6.68
[13] 17.72 14.82 17.39 18.22 22.56 21.99 22.81 23.43 26.81
> my.lm <- 1m(y ~ x
> summary (my.1m)
Cal1:
lm(formula = y ~ x)
Residuals:
Min
Coefficients:
Estimate Std. Error t value Pr}(>|t|
x llllll
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 1.598 on 19 degrees of freedom
Multiple R-squared: 0.9592, Adjusted R-squared: 0.95
F-statistic: 446.1 on 1 and 19 DF, p-value: 1.179e-14
> 1
```

Figure 3.3: Some commands in R.

3.2.2 Subsection Test Example

Test subsection for TOC display

3.2.3 Subsection Test Example 2

This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

Figure 3.4: The logo of a familiar university.

3.2.4 Section Summary

This holds the summary. Well, not really a summary - there was a lot of filler in this section.

Figure 3.5: Yet another blank float that has no purpose. This is only to test the appearance of the Lists of Figures and the List of Tables.

Figure 3.6: A signal and the result after a basic filter. The FFT was used to create the plot on the right.

3.3 Section Test Example 3

Test section for toc display only.

Figure 3.7: There is nothing to see here.

Figure 3.8: There is another float here. I wonder what could be here? Guess what? Nothing! There is no material in this float.

3.3.1 Subsection Test 1

Test subsection for toc display only.

3.3.2 Subsection Test 2

Test subsection for toc display only.

4. SUMMARY AND CONCLUSIONS

The summary goes here, along with your conclusions. The title of this final chapter/section must contain the words "summary" or "conclusions."

Here, I attempt to fill the section with more figures, possibly more tables. The inclusion of these floats is to manipulate the list of figures and list of tables in order to see when the inconsistent spacing begins. It is important to remember that any images you wish to use are placed in the appropriate directory inside the folder in which the project is kept. In the original template, all the images used as figures here are placed in the subdirectory graphics, as declared in the preamble of TAMUTemplate.tex. If you wish to use any other directories, be sure to declare them in the preamble of TAMUTemplate.tex. See the figure below on how to declare directories.

```
%This package allows for the use of graphics in the
%document.
\usepackage{graphicx}
%If you have JPEG format images, add .jpg as an
%allowed file extension below. Same for Bitmaps (.bmp).
\DeclareGraphicsExtensions{.pnq}
FIt is best practice to keep all your pictures in
fone folder inside the main directory in which your
%TeX file is kept. Here the folder is named "graphic."
%Replace the name here with your folder's name, if needed.
%The period is needed due to relative referencing.
\graphicspath{ {./graphic/} }
```

Figure 4.1: Declaring graphics directories.

This version of the template now has a section to place any packages that you are using - see the figure below.

More figures will be inserted, with some text between them.
This section has filler text. These words serve no meaning except to fill a few lines in the

```
78
```

Figure 4.2: The place to declare any packages you require that I have not already declared. This simplifies debugging.
document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

Figure 4.3: Two points on the unit circle and their corresponding position vectors.

This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no

Figure 4.4: Changing the method of compilation for XeLaTeX in TeXstudio.
meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

```
II. Changes and Fixes
(v3.17.01) The following changes were made:
-Fixed issue with adding fourth-level subheadings with the
lsubsubheading command. This is formatted as italicized,
left-justified text. An example is included in the body
of the example template. Notice that this subheading
win not appear in the Table of Contents, but settings
-Restrucutred the preamble of TAMUTemplate.tex to includ
a space for student-loaded packages. It is strongly
suggested to place any other packages in this space to
allow for easier troubleshooting.
The following items still need to be fixed:
-Spacing in LoF/T (List of Figures/Tables) for documents
be implemented for this.
-The chapter Method is still a work in progress. A new
update will be released when this is implemented.
-Font choices.
(v3.16.10) The following changes were made:
- Adjusted compilation of the bibliography. Dependence on
the file bibliography.tex has been removed.
- Removed duplicate \bibliographystyle{} command.
(V3.16.09) The following items have been added:
- A new section, titled "Contributors and Funding
in Fall' 2016, al1 theses and dissertations should
include this, section, even if no external funding was
provided. Instructions on how to external funding was
are included in the file contributors.tex.
- The preexisting template has been merged with a
previous version that addresses spacing issues. All 
formatting should be correct; any discrepencies will be
- Some of the example content in the body has changed
```

Figure 4.5: A portion of the changelog in the README for this document. This is located in the root directory.

This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These
words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document. This section has filler text. These words serve no meaning except to fill a few lines in the document.

4.1 Challenges

Section here is to test toc display only.

4.2 Further Study

Section here is to test toc display only.

APPENDIX A

FIRST APPENDIX

Text for the Appendix follows.

Figure A.1: TAMU figure

APPENDIX B

THIS TITLE IS MUCH LONGER THAN THE FIRST AND EXTENDS ALL THE WAY TO THE NEXT LINE

Text for the Appendix follows.

Figure B.1: Another TAMU figure.

B. 1 Appendix Section

B. 2 Second Appendix Section

[^0]: ${ }^{1}$ Science, Technology, Engineering, and Mathematics. This is an example of a footnote. You can see that it is numbered and appended at the end of the page. Also, you can see the effect of having a multiline footnote.

[^1]: ${ }^{2}$ Notice here that I also show off the itemize environment for unordered lists. Ordered lists use the enumerate environment.

[^2]: ${ }^{3}$ Yes, I pulled a Fermat. But really, a Google search will likely help you find what you need to do.

[^3]: ${ }^{1}$ This is an incomplete list.

[^4]: ${ }^{2}$ Gig 'em!
 ${ }^{3}$ This number describes enrollments at the Columbus campus; enrollments at regional campuses in Lima, Mansfield, Marion, Newark, and Wooster are not counted.

