THEOREM 2.1

ADRIENNE STANLEY

Abstract

We prove theorem 2.1 using the method of proof by way of contradiction. This theorem states that for any set A, that in fact the empty set is a subset of A, that is $\emptyset \subset A$.

We first start with a discussion of subsets.
Definition 1. Let A and B be sets. We say A is a subset of B if every element in A is also an element of B and we write $A \subset B$. This can also be written as

$$
(A \subset B) \leftrightarrow \forall x(x \in A \rightarrow x \in B) .
$$

Notice that for sets A and B, if $A \not \subset B$, then there exists an element x such that $x \in A$ and $x \notin B$. That is,

$$
(A \not \subset B) \leftrightarrow \exists x(x \in A \wedge x \notin B)
$$

Example 1. Let $A=\{1,2,3,4,5\}, B=\{1,2\}$ and $C=\{1,7\}$. We can see that every element in B is an element of A. Further, we can see that C contains an element, namely 7, which is not in A. Thus, $B \subset A$ and $C \not \subset A$.

We now prove theorem 2.1.
Theorem (2.1). For any set $A, \emptyset \subset A$.
Proof. By way of contradiction, suppose that the theorem fails. Let A be a set such that $\emptyset \not \subset A$. From the above discussion, we can see that there exists an element x such that $x \in \emptyset$ and $x \notin A$. Let x be such an element. Since the emptyset has no elements, then $x \notin \emptyset$. Thus, we have that $x \in \emptyset$ and $x \notin \emptyset$. This contradiction proves that the theorem is true.

