SKIT COLLEGE Faculty of Applied Science and Engineering
 ME-201- QUIZ \#3
 Discrete Random Variables \& Probability Distributions

Instructor: Prof. CM sir

30 AUGUST 2019

Name:
Roll Number:

This exam contains 7 pages (including this cover page) and 4 questions. Total of points is 15 . Good luck and Happy reading work!

Distribution of Marks

Question	Points	Score
1	0	
2	0	
3	7	
4	8	
Total:	15	

1. In a particular game, a fair die is tossed. If the number of spots showing is either 4 or 5 you win 1 , ifthenumberofspotsshowingis6youwin4, and if the number of spots showing is 1,2 , or 3 you win nothing. Let X be the amount that you win. Which of the following is the expected value of X ?
(a) 1.00
(b) 2.50
(c) 4.00
(d) 6.00
2. The weight of written reports produced in a certain department has a Normal distribution with mean 60 g and standard deviation 12 g . The probability that the next report will weigh less than 45 g is
(a) 0.1056
(b) 0.3944
(c) 0.1045
(d) 0.8944
3. A small store keeps track of the number X of customers that make a purchase during the first hour that the store is open each day. Based on the records, X has the following probability distribution. The standard deviation of the number of customers that make a purchase during the first hour that the store is open is
(a) (4 points) $P(X=1)$
(b) (3 points) $P(X \geq 4)$
4. A reservation service employs five information operators who receive requests for information independently of one another, each according to a Poisson process with rate $\mu=2$ per minute.
(a) (4 points) What is the probability that during a given 1-min period, the first operator receives no requests?
(b) (4 points) What is the probability that during a given 1-min period, exactly four of the five operators receive no requests? (Hint: treat either as a binomial process of 5 trials with 4 successes or consider 5 combinations of Poisson processes, e.g. only 1st operation receives a request or only 2 nd operation receives a request and so on)

Probability mass/distribution functions

Binomial Distribution

$$
\begin{gathered}
f(x ; n, p)=b(x ; n p)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
\mu=E(x)=n p \\
\sigma_{x}^{2}=n p(1-p)
\end{gathered}
$$

Hypergeometric Distribution

$$
\begin{aligned}
P(X=x) & =h(x ; n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \\
\mu & =E(X)=\frac{n M}{N} \\
\sigma_{x}^{2} & =n \frac{M}{N} \frac{N-M}{N} \frac{N-n}{N-1}
\end{aligned}
$$

Poisson Distribution

$$
\begin{gathered}
P(x ; \mu)=e^{-\mu} \frac{\mu^{x}}{x!} \\
E(X)=\operatorname{Var}(X)=\mu
\end{gathered}
$$

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.

