Quantum Homework Template

Erin De Pree

Fall 2019

Suppressing Section Numbering

If you are going to label your sections by problem number, then it is a good idea to use \section* instead of \section so you can suppress the section numbering. This way you won't write " 3 Problem 2"!

Here, I'm going to work through problem 1.5 from our text. This will show you how to write kets and such. I've also included a section on matrices so you can see how to write them up.

Be sure to include the depreequantum.sty style file as it loads the necessary packages.

Problem 1.5

A beam of spin- $1 / 2$ particles is prepared in the state

$$
|\psi\rangle=\frac{2}{\sqrt{13}}|+\rangle+i \frac{3}{\sqrt{13}}|-\rangle
$$

Part a What are the possible results of a measurement of the spin component S_{z}, and with probabilities would they occur?

You will either measure $S_{z}=+\hbar / 2$ (spin up) or $S_{z}=-\hbar / 2$ (spin down).
The probability of measuring $S_{z}=+\hbar / 2$ is

$$
\begin{aligned}
\mathcal{P}_{+} & =|\langle+\mid \psi\rangle|^{2}=\left\lvert\,\left.\langle+|\left(\frac{2}{\sqrt{13}}|+\rangle+i \frac{3}{\sqrt{13}}|-\rangle\right)\right|^{2}\right. \\
& =\left|\frac{2}{\sqrt{13}}\langle+\mid+\rangle+i \frac{3}{\sqrt{13}}\langle+\mid-\rangle\right|^{2} \\
& =\left|\frac{2}{\sqrt{13}}+0\right|^{2}=\frac{4}{13} \simeq 31 \%
\end{aligned}
$$

While the probability of measuring $S_{z}=-\hbar / 2$ is

$$
\begin{aligned}
\mathcal{P}_{-} & =|\langle-\mid \psi\rangle|^{2}=\left\lvert\,\left.\langle-|\left(\frac{2}{\sqrt{13}}|+\rangle+i \frac{3}{\sqrt{13}}|-\rangle\right)\right|^{2}\right. \\
& =\left|\frac{2}{\sqrt{13}}\langle-\mid+\rangle+i \frac{3}{\sqrt{13}}\langle-\mid-\rangle\right|^{2} \\
& =\left|0+i \frac{3}{\sqrt{13}}\right|^{2}=\left(-i \frac{3}{\sqrt{13}}\right)\left(i \frac{3}{\sqrt{13}}\right) \\
& =-i^{2} \frac{9}{13}=\frac{9}{13} \simeq 69 \%
\end{aligned}
$$

Part b What are the possible results of a measurement of the spin component S_{x}, and with probabilities would they occur?

Measure $S_{x}= \pm \hbar / 2$.
Probability of measuring $S_{x}=+\hbar / 2$ is

$$
\begin{aligned}
\mathcal{P}_{+x} & =\left|{ }_{x}\langle+\mid \psi\rangle\right|^{2}=\left|\left(\frac{1}{\sqrt{2}}\langle+|+\frac{1}{\sqrt{2}}\langle-|\right)\left(\frac{2}{\sqrt{13}}|+\rangle+i \frac{3}{\sqrt{13}}|-\rangle\right)\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}} \frac{2}{\sqrt{13}}+i \frac{1}{\sqrt{2}} \frac{3}{\sqrt{13}}\right|^{2}=\left|\frac{2+3 i}{\sqrt{26}}\right|^{2} \\
& =\frac{1}{26}(2-3 i)(2+3 i)=\frac{4-6 i+6 i-9 i^{2}}{26} \\
& =\frac{4+9}{26}=\frac{13}{26}=\frac{1}{2}=50 \%
\end{aligned}
$$

Probability of measuring $S_{x}=-\hbar / 2$ is

$$
\begin{aligned}
\mathcal{P}_{-x} & =\left|{ }_{x}\langle-\mid \psi\rangle\right|^{2}=\left|\left(\frac{1}{\sqrt{2}}\langle+|-\frac{1}{\sqrt{2}}\langle-|\right)\left(\frac{2}{\sqrt{13}}|+\rangle+i \frac{3}{\sqrt{13}}|-\rangle\right)\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}} \frac{2}{\sqrt{13}}-i \frac{1}{\sqrt{2}} \frac{3}{\sqrt{13}}\right|^{2}=\left|\frac{2-3 i}{\sqrt{26}}\right|^{2} \\
& =\frac{1}{26}(2+3 i)(2-3 i)=\frac{4-6 i+6 i-9 i^{2}}{26} \\
& =\frac{4+9}{26}=\frac{13}{26}=\frac{1}{2}=50 \%
\end{aligned}
$$

Part c Histograms! See fig. 1 for the histograms. Also note the figure appears on the next page because ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is automatically placing it where it makes most sense (after it is referenced).

Figure 1: Probabilities of measuring various spins in problem 1.5. You may find it easier to make your histograms in Excel or Google Sheets or by hand and include them as a picture.

Matrix Notation

Going to use \doteq to mean represented by. In $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, use the notation: $\backslash \operatorname{dot}\{=\}$. The quantum state isn't a column vector, but it can be represented by a column vector

This is the z-basis set.
Let's use the column vector notation to represent a state $|\psi\rangle$ as a projection of the state on the $|+\rangle$ and the projection on the $|-\rangle$:

$$
\begin{gathered}
|\psi\rangle \doteq\binom{\langle+\mid \psi\rangle}{\langle-\mid \psi\rangle} \\
|\psi\rangle=a|+\rangle+b|-\rangle \\
|\psi\rangle \doteq\binom{a}{b} \\
\langle\psi| \doteq\left(\begin{array}{ll}
a^{*} & b^{*}
\end{array}\right)
\end{gathered}
$$

We can also write the x and y kets in the z-basis:

