Proof Methods Showcase

${\rm Me}$

November 14, 2019

1 Direct Proof

Replace this text with a few sentences describing the process for this type of proof and when you might use this method. (Reviewing Section 3.6 can help.)

Theorem. Replace this text with the theorem statement.

Proof. Write your proof here.

2 Proof by Contrapositive

Replace this text with a few sentences describing the process for this type of proof and when you might use this method. (Reviewing Section 3.6 can help.)

Theorem. Replace this text with the theorem statement.

Proof. Write your proof here.

3 Proof by Contradiction

Replace this text with a few sentences describing the process for this type of proof and when you might use this method. (Reviewing Section 3.6 can help.)

Theorem. Replace this text with the theorem statement.

Proof. Write your proof here.

4 Proof by Mathematical Induction

Replace this text with a few sentences describing the process for this type of proof and when you might use this method.

Theorem. Replace this text with the theorem statement.

Proof. Write your proof here.

Some LaTeX Commands

Here are some example sentences using LaTeX commands: If $a \equiv 2 \pmod{3}$, then $a^2 \equiv 1 \pmod{3}$.

If x and y are positive real numbers, the arithmetic mean is $\frac{x+y}{2}$ and the geometric mean is \sqrt{xy} . The union of two sets is $A \cup B$ and the intersection of two sets is $A \cap B$. Let $(x, y) \in A \times B$.

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^{2019}$. In set-builder notation, the set of all odd integers is $\{2k + 1 \mid k \in \mathbb{Z}\}$. Suppose that

 $1 + 3 + 5 + \dots + (2k - 1) = k^2.$

Note that if a = 2k, then

$$a^{2} + 3a + 5 = (2k)^{2} + 3(2k) + 5$$
$$= 4k^{2} + 6k + 4 + 1$$
$$= 2(2k^{2} + 3k + 2) + 1.$$

If $g \circ f$ is surjective, then g is surjective. Note that $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.