

Computer Networks

Lucas Dias Hiera Sampaio

Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Cornélio Procópio, Programa de Pós Graduação em Informática

April 1, 2020

Contents

Overview
 Introduction
 Blocks
 Equations
 Figures
 Tables

*

7 Algorithms8 Code Examples9 References

Introduction

Pythagoras Theorem

Let a be the hypotenuse of a right triangle, b and c its *catheti* or legs, then:

$$a^2 = b^2 + c^2 \tag{1}$$

Blocks

Block Example

This is a simple block example.

Alert Example

This is a simple alert block example.

Example Example

This is a simple example block example

Equations

Equation (2) defines the theoretic channel capacity given by the Shannon-Hartley Theorem:

$$C = B \log_2(1+\delta) \tag{2}$$

where B is the channel bandwidth and δ is the signal-to-noise ratio (SNR).

Multiple Equations

Matrices

 $M = \begin{bmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,N} \\ m_{2,1} & m_{2,2} & \dots & m_{1,N} \\ \vdots & \vdots & \ddots & \vdots \\ m_{N,1} & m_{N,2} & \dots & m_{N,N} \end{bmatrix}$

Figures

How to Include Figures

There are basically two ways to include figures in a beamer presentation:

- When there are little to no details that are small or when the figure size does not matter, one may include it inside a frame as shown in the next slide.
- When there are many details and the figure must be enlarged one may use a full frame to show the figure and ignore frame default content as shown next.

Figures inside

×

Figure: Example of a Figure inside a frame.

Electric Field Variation in Time

Tables

Table: Table Example.

Algorithms

Algorithm 1 pseudocode for the calculation of

- 1: for i = 1 to N do
- 2: for j = 1 to JJJJ do
- 3: energy[i * JJJ+j] = interpolate(AAA[i * JJJ+j], ZZZ)
- 4: end for
- 5: end for

Code Examples

int main() {
 printf("Hello World");
 return 0;
}

References

Some references to showcase [allowframebreaks] [4, 2, 5, 1, 3]

References I

A selection of problems and results in combinatorics. In *Recent trends in combinatorics (Matrahaza, 1995)*, pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

- R. Graham, D. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley, Reading, MA, 1989.
- G. D. Greenwade. The Comprehensive Tex Archive Network (CTAN). *TUGBoat*, 14(3):342–351, 1993.

References II

D. Knuth.

Two notes on notation. Amer. Math. Monthly, 99:403–422, 1992.

H. Simpson. Proof of the Riemann Hypothesis. preprint (2003), available at http://www.math.drofnats.edu/riemann.ps, 2003.

