Computer Networks
 Lecture 1

Lucas Dias Hiera Sampaio

Universidade Tecnológica Federal do Paraná (UTFPR),
Câmpus Cornélio Procópio, Programa de Pós Graduação em Informática

$$
\text { April 1, } 2020
$$

Contents

1 Overview
2 Introduction
3 Blocks
4 Equations
5 Figures
6 Tables

7 Algorithms
8 Code Examples
9 References

Introduction

Pythagoras Theorem

Let a be the hypotenuse of a right triangle, b and c its catheti or legs, then:

$$
\begin{equation*}
a^{2}=b^{2}+c^{2} \tag{1}
\end{equation*}
$$

Blocks

Block Example

This is a simple block example.

Alert Example

This is a simple alert block example.

Example Example

This is a simple example block example

Equations

Equation (2) defines the theoretic channel capacity given by the Shannon-Hartley Theorem:

$$
\begin{equation*}
C=B \log _{2}(1+\delta) \tag{2}
\end{equation*}
$$

where B is the channel bandwidth and δ is the signal-to-noise ratio (SNR).

Multiple Equations

$$
\begin{align*}
(a+b)^{2} & =0 \tag{3}\\
a^{2}+2 a b+b^{2} & =0 \\
a^{2}+b^{2} & =-2 a b \tag{4}
\end{align*}
$$

UTiPR

Matrices

$$
M=\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \ldots & m_{1, N} \tag{5}\\
m_{2,1} & m_{2,2} & \ldots & m_{1, N} \\
\vdots & \vdots & \ddots & \vdots \\
m_{N, 1} & m_{N, 2} & \ldots & m_{N, N}
\end{array}\right]
$$

Figures

How to Include Figures

There are basically two ways to include figures in a beamer presentation:

- When there are little to no details that are small or when the figure size does not matter, one may include it inside a frame as shown in the next slide.
- When there are many details and the figure must be enlarged one may use a full frame to show the figure and ignore frame default content as shown next.

Figures inside

Figure: Example of a Figure inside a frame.

Electric Field Variation in Time

Tables

A	B
C	D

Table: Table Example.

Algorithms

Algorithm 1 pseudocode for the calculation of
1: for $i=1$ to N do
2: \quad for $j=1$ to $J J J J$ do
3: \quad energy $[i * J J J+j]=$ interpolate $(A A A[i * J J J+j], Z Z Z)$
4: end for
5: end for

Code Examples

$$
\begin{aligned}
& \text { int } \begin{array}{l}
\text { main() \{ } \\
\quad \text { printf("Hello World"); } \\
\text { return 0; } \\
\}
\end{array} \quad .
\end{aligned}
$$

References

Some references to showcase [allowframebreaks] $[4,2,5,1,3]$

References I

图 P. Erdős.
A selection of problems and results in combinatorics. In Recent trends in combinatorics (Matrahaza, 1995), pages 1-6. Cambridge Univ. Press, Cambridge, 1995.

R R. Graham, D. Knuth, and O. Patashnik.
Concrete mathematics.
Addison-Wesley, Reading, MA, 1989.
E G. D. Greenwade.
The Comprehensive Tex Archive Network (CTAN).
TUGBoat, 14(3):342-351, 1993.

References II

E D. Knuth.
Two notes on notation.
Amer. Math. Monthly, 99:403-422, 1992.
固 H. Simpson.
Proof of the Riemann Hypothesis.
preprint (2003), available at
http://www.math.drofnats.edu/riemann.ps, 2003.

