

INSTITUTO TECNOLÓGICO VALE

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum sed nisi lobortis ex posuere venenatis.

Gabriel Garcia¹, Autor 2¹²

¹Federal University of Ouro Preto, Ouro Preto, Brazil ²Vale Institute of Technology, Ouro Preto, Brazil

Abstract	Classification		
The electrocardiogram (ECG) is the most widely used non-invasive technique in heart	An accurate arrhythmia	X ₂	1 the second

- disease diagnoses
- The ECG is frequently used to detect cardiac rhythm abnormalities, otherwise known as arrhythmias
- The aiming of this work is:

- All accurate annything classification is desirable to correctly diagnose cardiac issues and in some cases, the early detection can save lives
- SVM has been widely used to classify arrhythmias

Arrhythmia classification system

(MIT-BIH) Arrhythmia Database

- It is essential a representative database for a good training and fair evaluation
- The Massachusetts Institute of Technology Beth Israel Hospital Arrhythmia Database is one of the recommended databases by the Association for the Advancement of Medical Instrumentation

The Temporal Vectorcardiogram

We propose a new representation method based in

This á é î system responsible for the pumping action of heartbeats is formed by a group of specialized cells that send electrical signals

Electrocardiogram (ECG) is the most common process to record these electrical signals

Results

Test results (DS2) of the best Complex Network parameters configuration, chosen by the most relevant (DS1) training for Temporal VCG.

Filter	m	T_0	T_Q	Acc	N Se/+P/FPR	S Se/+P/FPR	V Se/+P/FPR
de Chazal's	2.0	0.055	0.6	90.2	94.0/96.3/29.6	28.2/22.2/3.8	84.8/64.7/3.1
Common	8.0	0.005	0.9	91.0	96.1/95.2/39.8	13.8/ 17.1/ 2.5	75.6/ 68.8/ 2.3
No Filter	2.0	0.055	0.6	91.2	95.0/96.5/27.9	29.6/26.4/3.1	85.1/ 66.3/ 3.0

Test results (DS2) of the best Complex Network parameters configuration, chosen by the most relevant (DS1) training for VCG-2D.

Filter	m	T_0	T_Q	Acc	N Se/+P/FPR	S Se/+P/FPR	V Se/+P/FPR
de Chazal's	2.0	0.055	0.6	87.3	90.9/95.8/32.6	30.1/ 20.0/ 4.6	82.0/ 53.2/ 5.0
Common	4.0	0.005	0.9	90.8	95.1/95.7/35.0	29.3/23.0/3.8	76.6/73.6/1.9
No Filter	2.0	0.055	0.6	89.2	93.1/96.1/30.3	25.4/17.8/4.5	82.2/62.7/3.4

The temporal VCG have increased the global accuracy, and have better results classifying the N and S classes, when it is compared with the best result of the VCG-2D.

Conclusions

- In this work we proposed a new 3D visualization of the vectorcardiogram, so called temporal vectorcardiogram, and complex network as feature extractor method with SVM based arrhythmia classification in ECG signals.
- The method achieves greater accuracy classifying Ventricular Ectopic Beats, Supraventricular Ectopic Beats and Normal Beats.
- New techniques to extract 3D features from the Temporal VCG could be an interesting research direction.

www.ufop.br & www.itv.org

gabrcg@gmail.com & email 2