

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of ... (Doctor in de ...)

Your Name

July 30, 2021

Promotor: Prof. Dr. ir. ? Co-promotor: Prof. Dr. ir ? Jury: Prof. Dr. ir. ?, chairman Prof. Dr. ir. ?, vice-chairman Dr. ir. ?, secretary Random dude (university somewhere)

Faculty of ... Department of ...

Acknowledgement

I would like to thank ...

Your Name

ii

Abstract

Give here a short summary of your work

iv

List of abbreviations

Below, the list of abbreviations that has been used throughout this thesis, can be found. This list is made per chapter to show where each abbreviation appears first. No new entry will be made if a certain abbreviation returns in a later chapter.

Chapter 1	
SPEĊTA	Series Parallel Constant Torque Elastic Actuation
SEA	Series Elastic Actuation
PEA	Parallel Elastic Actuation
VSA	Variable Stiffness Actuation
SPEA	Series Parallel Elastic Actuation
+SPEA	Series Parallel Elastic Actuation with multiple parallel branches
iSPEA	intermittent Series Parallel Elastic Actuation
DMA	Dual Motor Actuation
DOF	Degrees Of Freedom
SMES	Superconducting Magnetic Energy Storage
CAES	Compressed Air Energy Storage
pHRI	Physical Human-Robot Interaction
NBM	Non Backdrivable Mechanism
CT	Constant Torque

v

Chapter 2	
СТМ	Constant Torque Mechanism
ZTS	Zero Torque Shift
CFM	Constant Force Mechanism

Chapter 4	
HRI	Human-Robot Interaction

Chapter 5	
BLDC	Brushless Direct Current
PMSM	Permanent Magnet Synchronous Machine
PMAC	Permanent Magnet Alternating Current
PSGT	Parallel Shaft Gear Train
PGT	Planetary Gear Train
HD	Harmonic Drive
CD	Cycloid Drive
BS	Ball Screw
WG	Wave Generator
FS	Flexspline
CS	Circular Spline
EC	Eccentricity Cam
CD	Cycloid Disc
RR	Ring rollers with ring gear
OD	Output Disc

vi

List of symbols

Below, the list of symbols that has been used throughout this thesis, can be found. This list is made per chapter to easily find the meaning for each symbol.

Standard Symbols	
Т	Torque
θ	Angle
Κ	Spring Stiffness
F	Force
m	Mass
V	Volume
J	Mass moment of inertia
Ι	Area moment of inertia
d	Diameter
L	Length
t	Thickness
σ	Stress
E	Module of elasticity
b	Width
Ι	Motor Current
R	Armature Resistance

Standard Subscripts

	A
i	Input
o,out	Output
spring.spr	Spring
mech	Mechanical
min	Minimum
max	Maximum

Chapter 2Q L_0 ΔL ΔL θ_L Left inclination angle θ_R Right inclination angle

Chapter 3

Aspring	The torque level of a constant torque spring
R_1	
R_2	
r_0	
С	Minimal required distance between the axes of the drums of a constant torque spring

Chapter 4

Gap radius
Motor torque constant
Number of wires in the cross-section
Magnetic field strength
Motor mass
Motor inertia
Armature radius
Rotor length
Motor radius
Motor length
Armature density
Reduction ratio
Utilization factor of the machine
Air gap flux density
Pole coverage factor
Linear current density
Number of armature windings
Stall torque
Specific winding resistance
Total length of the winding
Winding radius
Winding cross-section
Stator thickness
Rotor thickness
Motor diameter

viii

Contents

Ac	knowledgement	i
Ał	ostract	iii
Li	st of Abbreviations	v
Li	st of Symbols	vii
1	Introduction 1.1 Research questions 1.2 Outline of the thesis	1 1 1
Ι	First Part	3
2	First real chapter 2.1 Introduction 2.2 Conclusion	5 5 5
II	Part two	7
3	Second chapter	9
II	I Conclusion	11
4	Conclusion and future work	13
	4.1 General conclusions	13
	4.1.1 Question 1?	13
	4.1.2 Question 2?	13
	4.1.3 Question 3?	13
	4.1.4 Question 4?	13
	4.1.5 Question 5?	13
	4.2 FULUTE WORK	13

A List of publications

15

Chapter

Introduction

Give here the introduction...

1.1 Research questions

The goal of this dissertation is to ...

This is divided into several separate research questions:

- Question 1?
- Question 2?
- Question 3?
- Question 4?
- Question 5?

1.2 Outline of the thesis

The doctoral thesis is divided into... (give here overview of the thesis)

CHAPTER 1. INTRODUCTION

Part I

First Part

Chapter 2

First real chapter

2.1 Introduction

Put here the introduction

2.2 Conclusion

Give here the conclusion of the first chapter

Part II

Part two

Chapter 3

Second chapter

CHAPTER 3. SECOND CHAPTER

Part III

Conclusion

Chapter 4

Conclusion and future work

- 4.1 General conclusions
- 4.1.1 Question 1?
- 4.1.2 Question 2?
- 4.1.3 Question 3?
- 4.1.4 Question 4?
- 4.1.5 Question 5?
- 4.2 Future work

CHAPTER 4. CONCLUSION AND FUTURE WORK

Appendix 7

List of publications

Publications which are submitted for review, or which are not listed in Scopus (such as poster presentations or publications in journals not listed in Scopus), are listed in grey.

Articles in scientific journals with an international referee system

- 1. ...
- 2. ...
- 3. Last Name, A., Co-author, B., ..., & Last author, C. (2019). Name of paper. Name of Journal, edition number.

Review articles in scientific journals with an international referee system

1. ...

Interational conference papers

- 1. ...
- 2. ...

International conference and symposium abstracts and/or posters

- 1. ...
- 2. ...

APPENDIX A. LIST OF PUBLICATIONS

Bibliography

- [1] Boston Dynamics. Changing your idea of what robots can do., 2021 (accessed March 24, 2021). [Online]. Available: https://www.bostondynamics.com/
- [2] E. Saerens, R. Furnémont, T. Verstraten, P. L. García, S. Crispel, V. Ducastel, B. Vanderborght, and D. Lefeber, "Scaling laws of compliant elements for high energy storage capacity in robotics," *Mechanism and Machine Theory*, vol. 139, pp. 482–505, 2019.
- [3] High Torque Series Brushless DC Motors. Emoteq Inc., 2018, [PDF file].
- [4] H. J. Bidgoly, M. N. Ahmadabadi, and M. R. Zakerzadeh, "Design and modeling of a compact rotational nonlinear spring," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 4356–4361.
- [5] L. L. Howell, "Compliant mechanisms," in 21st Century Kinematics. Springer, 2013, pp. 189–216.
- [6] S. Bernhardt, "Cable guide mechanism for constant tension reel," Jan. 29 1963, uS Patent 3,075,724.