Opposite Angles of a Rhombus

Sarah Wright

February 5, 2019

Conjecture A was Ben's rephrasing of a portion of the original Conjecture 1.1. Andrew and Jake both gave initial ideas for the proof on $1 / 23$ and Elijah presented a formal proof on $1 / 25$.
The other half of Conjecture 1.1 was determined to be untrue and possibly corrected by Gianna into Conjecture B which is still to be proven at the time of this writing.

Theorem A. The opposite angles in a rhombus are congruent.
Proof. Let $A B C D$ be a rhombus. Our aim is to show that each pair of opposite angles are congruent. Without loss of generality, we choose to show that angle $A B C$ is congruent to angle $C D A$.
Use Euclid's Postulate 2, construct the diagonal $A C$. This creates two triangles and we aim to show these triangles are congruent.
First notice that segments $A B$ and $C D$ are congruent by the definition of a rhombus. Similarly, segments $B C$ and $D A$ are congruent to one another. Lastly the diagonal segment $A C$ is congruent to segment $A C$ by Euclid's Common Notion 4.

Figure 1: $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}, \overline{A C} \cong \overline{A C}$
All together, that gives three pairs of corresponding sides of each triangle congruent to one another. By Euclid I.8, triangles $A B C$ and $C D A$ are congruent, and the corresponding angles, namely angles $A B C$ and $C D A$ are congruent.
Since our choice of a pair of opposite angles was arbitrary, we have proven our claim.

If there is any narrative that makes sense here, or closing remarks, feel free to include something. ©

