Overleaf Homework Template

Question 1. Write down sets in order of containment.
We pretend that equivalence classes are just numbers.

$$
\mathbb{C} \supset \mathbb{R} \supset \mathbb{Q} \supset \mathbb{Z} \supset \mathbb{N} \supset \mathbb{P} \not \supset\left(\mathbb{F}_{7}=\mathbb{Z} / 7 \mathbb{Z}\right) \supset\{\varnothing\}
$$

Question 2. Find roots of $x^{2}-8 x=9$.
We proceed by factoring,

$$
\begin{aligned}
x^{2}-8 x-9 & =9-9 \\
x^{2}-x+9 x-9 & =0 \\
(x-1)(x+9) & =0 \\
x & \in\{1,-9\}
\end{aligned}
$$

Subtract 9 on both sides.
Breaking the middle term.
Pulling out common $(x-1)$.
$f(x) g(x)=0 \Rightarrow f(x)=0 \vee g(x)=0$.
Question 3. Figure 1 shows two cipher wheels. The left one is from Jeffrey Hoffstein, et al. [1] (pg. 3). Write a Python 3 program that uses it to encrypt: FOUR SCORE AND SEVEN YEARS AGO.

Figure 1. Cipher wheels.
The Python program is given in listing 1 and the encryption is given in table 1.

```
def encrypt(plain):
    cipher = ''
    for c in plain:
        cipher = cipher+c if c==' ' else cipher+chr(((ord(c)-60) % 26)+65)
    return cipher
print(encrypt("FOUR SCORE AND SEVEN YEARS AGO"))
```

Listing 1. Python 3 implementing figure 1 left wheel.

Plain Text	FOUR	SCORE	AND	SEVEN	YEARS	AGO
Cipher Text	KTZW	XHTWJ	FSI	XJAJS	DJFWX	FLT

Table 1. Caesar cipher

References

[1] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman. An introduction to mathematical cryptography, volume 1. Springer, 2008.

