Problem x.yz. Delete this text and write theorem statement here. We can draw the sets \mathbb{R} , \mathbb{Q} , \mathbb{I} , \mathbb{Z} , and \mathbb{N} . Let's assume our problem was: Prove that:

$$(\forall x \in \mathbb{N})\left[\sum_{i=0}^{n} i = \frac{n(n+1)}{2}\right]$$

Proof. I will induct on nBase case (n = 1): $\sum_{i=0}^{1} i = 1 = \frac{1(1+1)}{2} = 1$ Inductive Hypothesis: Assume $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$ for some $k \in \mathbb{N}$ Inductive Step: [I must show: $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$]

$$\sum_{i=0}^{k+1} i = k+1 + \sum_{i=0}^{k} i$$
 [By definition of series]
$$= (k+1) + \frac{k(k+1)}{2}$$
 [By I.H]
$$= \frac{(2k+2) + (k^2+k)}{2}$$

$$= \frac{k^2 + 3k + 2}{3}$$

$$= \frac{(k+1)(k+1)}{2}$$

 \therefore By the principle of induction, the claim holds for all $n \in \mathbb{N}$

Proposition x.yz. Let $n \in \mathbb{Z}$.

Disproof. Blah, blah, blah. I'm so smart.