Problem x.yz. Delete this text and write theorem statement here. We can draw the sets $\mathbb{R}, \mathbb{Q}, \mathbb{I}, \mathbb{Z}$, and \mathbb{N}. Let's assume our problem was: Prove that:

$$
(\forall x \in \mathbb{N})\left[\sum_{i=0}^{n} i=\frac{n(n+1)}{2}\right]
$$

Proof. I will induct on n
Base case ($\mathbf{n}=\mathbf{1}$): $\quad \sum_{i=0}^{1} i=1=\frac{1(1+1)}{2}=1$
Inductive Hypothesis: Assume $\sum_{i=0}^{k} i=\frac{k(k+1)}{2}$ for some $k \in \mathbb{N}$
Inductive Step: [I must show: $\sum_{i=0}^{k+1} i=\frac{(k+1)(k+2)}{2}$]

$$
\begin{aligned}
\sum_{i=0}^{k+1} i & =k+1+\sum_{i=0}^{k} i \\
& =(k+1)+\frac{k(k+1)}{2} \\
& =\frac{(2 k+2)+\left(k^{2}+k\right)}{2} \\
& =\frac{k^{2}+3 k+2}{3} \\
& =\frac{(k+1)(k+1)}{2}
\end{aligned}
$$

[By definition of series]
[By I.H]
\therefore By the principle of induction, the claim holds for all $n \in \mathbb{N}$

Proposition x.yz. Let $n \in \mathbb{Z}$.
Disproof. Blah, blah, blah. I'm so smart.

