

WRITE YOUR THESIS TITLE HERE IN ENGLISH AND IN ALL CAPITAL LETTERS

2025 PhD THESIS MECHANICAL ENGINEERING

Name SURNAME

Thesis Advisor
Prof. Dr. Name SURNAME

WRITE YOUR THESIS TITLE HERE IN ENGLISH AND IN ALL CAPITAL LETTERS

Name SURNAME

Thesis Advisor

Prof. Dr. Name SURNAME

T.C.

Karabük University
Institute of Graduate Programs
Department of Mechanical engineering
Prepared as
PhD Thesis

KARABÜK November 2025 I certify that in my opinion the thesis submitted by Name SURNAME titled "WRITE YOUR THESIS TITLE HERE IN ENGLISH AND IN ALL CAPITAL LETTERS" is fully adequate in scope and in quality as a thesis for the degree of PhD.

Prof. Dr. N	ame SURNAME	
Thesis Adv	visor, Department of Department of Mechan	ical Engineering
	is accepted by the examining committee at of Mechanical engineering as a PhD thesis	
Examining	Committee Members (Institutions)	Signature
Chairman	: Prof. Dr. ()	
Member	: Prof. Dr. ()	
Member	: Prof. Dr. ()	
Member	: Prof. Dr. (KBÜ)	
Member	: Assoc Prof. Dr. (KBÜ)	
The degree	of PhD by the thesis submitted is approved	by the Administrative Board of
the Institute	e of Graduate Programs, Karabük University	y.
Prof. Dr. Z	eynep ÖZCAN	
Director of	the Institute of Graduate Programs	

ABSTRACT

PhD Thesis

WRITE YOUR THESIS TITLE HERE IN ENGLISH AND IN ALL CAPITAL LETTERS

Name SURNAME

Karabük University Institute of Graduate Programs The Department of Mechanical Engineering

Thesis Advisor: Prof. Dr. Name SURNAME November 2025, 131 pages

Nowadays, rapid consumption of fossil fuels and increasing electricity requirement have attracted attention on renewable energy resources. Today, thermoelectric (TE) power generation has become a promising technology in energy saving and reduction of environmental impacts in the world. Thermoelectric generators (TEGs), based on Seebeck effect, are used in power generation by recovering waste heat released from automobiles, factories, and similar resources.

In this study, high temperature thermoelectric generators with 8 pairs of rectangular prism (TEG_{RP}) and cylindrical legs (TEG_C) were fabricated individually and experimentally investigated. Within this scope, oxide thermoelectric materials of dually doped $Ca_{2.5}Ag_{0.3}Eu_{0.2}Co_4O_9$ and $Zn_{0.96}Al_{0.02}Ga_{0.02}O$ with the highest figure of merit (zT) values of 0.57 and 0.17 were selected among 19 different compositions. TE powders were synthesized using sol-gel method following cold pressing for consolidation of n- and p-type legs of both TEGs. Prior to the fabrication of the TEGs, geometrical optimization

of the legs was performed for both TEGs using Response Surface Methodology and

dimensions of the legs were specified.

Power generation characteristics of the TEGs were evaluated by establishing a meas-

urement system and I - V and I - P curves were obtained. According to the results,

open circuit voltage (V_{OC}) and maximum generated output power (P_{max}) of both TEGs

increased with increasing ΔT . Maximum V_{OC} of TEG_{RP} and TEG_C were obtained as

133.1 mV and 158.2 mV, respectively, for the temperature difference (ΔT) of 440 °C at

495 °C hot side temperature (T_H) . As the current increased, output power was generated

with respect to $P \propto I^2$. P_{max} for TEG_{RP} and TEG_C were obtained as 33.7 mW and

45.5 mW at the same conditions.

Steady-state thermal and thermal-electric analyses were performed to evaluate power

generation performances and temperature distributions of TEG_{RP} and TEG_C. V_{OC} and

 P_{max} of both TEGs increased with increasing ΔT as well as in the experimental results.

Maximum V_{OC} for both TEGs were obtained as 1117 mV for 410 °C ΔT and 495 °C T_H .

I-P curves for both TEGs exhibited similar characteristics with the experimental results.

As a result, P_{max} for TEG_{RP} and TEG_C were obtained as 3315.1 mW and 2632.9 mW

in the same conditions. When the results of thermal-electric analyses are compared

to the experimental results of fabricated TEGs, measured open circuit voltages and

generated output powers were much lower than the results of thermal-electric analyses.

In this study, noteworthy voltage and output power losses were correlated to the contact

resistances between the TE legs and the silver conductors.

Key Words

: Thermoelectrics, oxide materials, material characterization, thermo-

electric properties, thermoelectric generator, response surface optimiz-

ation, thermal-electric analysis, power generation.

Science Code : 914.1.233

V

ÖZET

Doktora Tezi

TEZ BAŞLIĞINIZIN TÜRKÇE ÇEVİRİSİNİ TÜM HARFLER BÜYÜK OLARAK BURAYA YAZINIZ

Name SURNAME

Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Ana Bilim Dalı

Tez Danışmanı: Prof. Dr. Name SURNAME Kasım 2025, 131 sayfa

Günümüzde fosil yakıtların hızla tüketilmesi ve elektriğe olan artış, dikkatleri yenilenebilir enerji kaynakları üzerine çekmektedir. Bugün termoelektrik (TE) güç üretimi, enerji tasarrufu ve dünyadaki çevresel etkilerin azaltılması noktasında umut verici bir teknoloji haline gelmiştir. Temeli Seebeck etkisi olan termoelektrik jeneratörler, otomobiller, fabrikalar ve benzer kaynaklardan atılan atık ısının geri kazanılması ile güç üretiminde kullanılmaktadır.

Bu çalışmada, her biri 8 çift dikdörtgenler prizması (TEG_{RP}) ve silindirik (TEG_C) ayaklardan oluşan ve yüksek sıcaklıkta çalışan termoelektrik jeneratörler üretilmiş ve deneysel olarak incelenmiştir. Bu kapsamda, 19 farklı kompozisyon arasından, sırasıyla değerleri 0.57 ve 0.17 olan ve en yüksek termoelektrik verime (zT) sahip $Ca_{2.5}Ag_{0.3}Eu_{0.2}Co_4O_9$ ve $Zn_{0.96}Al_{0.02}Ga_{0.02}O$ oksit TE malzemeler seçilmiştir. TE tozlar sol-jel metodu ile sentezlenmiş, p- ve n-tipi ayakların konsolidasyonu için soğuk presleme yöntemi kullanılmıştır. Termoelektrik jeneratörler üretilmeden önce

Tepki Yüzeyi Metodolojisi ile her iki jeneratör için jeneratör ayaklarının geometrik

optimizasyonu gerçekleştirilmiş ve ayak boyutları belirlenmiştir.

Termoelektrik jeneratörlerin güç üretim karakterizasyonu için bir ölçüm sistemi kurularak

I - V ve I - P eğrileri elde edilmiştir. Sonuçlar incelendiğinde açık devre voltajı (V_{OC})

ve maksimum çıkış gücü (P_{max}) , sıcaklık farkı (ΔT) arttıkça her iki jeneratör için de

artmıştır. TEG_{RP} ve TEG_C için maksimum V_{OC} , 440 °C sıcaklık farkı ve 495 °C sıcak

yüzey sıcaklığı için sırasıyla 133.1 mV ve 158.2 mV olarak elde edilmiştir. Akım arttıkça

çıkış gücü de $P \propto I^2$ orantısına bağlı olarak üretilmiştir. Aynı sıcaklık şartlarında TEG_{RP}

ve TEG_C için P_{max} , sırasıyla 33.7 mW ve 45.5 mW olarak elde edilmiştir.

TEG_{RP} ve TEG_C'nin güç üretim performanslarının ve sıcaklık dağılımlarının belirle-

nebilmesi için kararlı hal ısıl ve ısıl-elektrik analizler gerçekleştirilmiştir. Deneysel

sonuçlarda olduğu gibi ΔT arttıkça V_{OC} ve P_{max} her iki jeneratör için de artmıştır.

Her iki jeneratör için de maksimum V_{OC} , 410 °C sıcaklık farkı ve 495 °C sıcak yüzey

sıcaklığı için 1117 mV olarak belirlenmiştir. I - P eğrileri her iki jeneratör için de

deneysel sonuçlar ile benzer karakteristik göstermiştir. Sonuç olarak, aynı sıcaklık

şartlarında TEG_{RP} ve TEG_C için P_{max} sırasıyla 3315.1 mW ve 2632.9 mW olarak elde

edilmiştir. İsil-elektrik analizlerin sonuçları üretilen jeneratörlerin deneysel sonuçları ile

karşılaştırıldığında ölçülen açık devre voltajı ve çıkış güçlerinin ısıl-elektrik analizleri

sonuçlarının çok daha altında olduğu belirlenmiştir. Çalışmadaki bu kayda değer voltaj ve

çıkış gücü kayıplarının TE ayaklar ile gümüş iletkenler arasındaki temas dirençlerinden

kaynaklandığı düşünülmektedir.

Anahtar Kelimeler: Termoelektrik, oksit malzemeler, malzeme karakterizasyonu,

termoelektrik özellikler, termoelektrik jeneratör, tepki yüzeyi

optimizasyonu, termal-elektrik analiz, güç üretimi.

Bilim Kodu

: 914.1.233

vii

ACKNOWLEDGMENT

I would like to present my foremost thanks to
I appreciate to
My intense gratefulness goes to

CONTENTS

	Page
APPROVAL	ii
ABSTRACT	iv
ÖZET	vi
ACKNOWLEDGMENT	viii
CONTENTS	ix
LIST OF FIGURES	xi
LIST OF TABLES	xii
SYMBOLS AND ABBREVIATIONS INDEX	xiii
PART 1	
INTRODUCTION	1
1.1. THIS IS A FIRST LEVEL HEADING	1
1.1.1. This is a second level heading	2
1.2. FIGURE EXAMPLES	3
1.3. TABLE EXAMPLES	4
1.4. SECTIONING AND CROSS-REFERENCING	5
1.4.1. Methodology Example	6
1.4.2. Results Example	6
1.4.2.1. Statistical Analysis	6
1.5. DISCUSSION	6
1.6. LISTS	6
1.6.1. Numbered List (Enumerate)	7
1.6.2. Bulleted List (Itemize)	7
1.7. INLINE MATHEMATICS	8
1.8. QUOTATIONS AND FOOTNOTES	8
PART 2	
THEORETICAL BACKGROUND	10

PART 3	
EXPERIMENTAL AND THEORETICAL STUDIES	11
PART 4	
RESULTS AND DISCUSSION	12
PART 5	
CONCLUSION AND FUTURE PLAN	13
REFERENCES	14
CURRICULUM VITAE	17

LIST OF FIGURES

	P	age
Figure 1.1.	A single placeholder example image.	3
Figure 1.2.	Example of two related subfigures side by side	4
Figure 1.3.	A sequence of related figures illustrating progressive results	4

LIST OF TABLES

		Page
Table 1.1.	Selected fundamental physical constants (CODATA 2018) [26]	5
Table 1.2.	Typical properties of selected engineering materials [27]	5
Table 1.3.	Example of a Likert-scale question and responses [28]	5

SYMBOLS AND ABBREVIATIONS INDEX

SYMBOLS

zT: Figure of merit

PF: Power factor

S: Seebeck coefficient

 ρ : Electrical resistivity

 ρ_n : Electrical resistivity of n-type legs

 ρ_p : Electrical resistivity of p-type legs

 σ : Electrical conductivity

 ΔT : Temperature difference

 κ : Thermal conductivity

 κ_E : Electron thermal conductivity

 κ_L : Lattice thermal conductivity

 κ_{PH} : Phonon thermal conductivity

 T_H : Hot side temperature of thermoelectric generator

 T_C : Cold side temperature of thermoelectric generator

P: Generated output power

 P_{max} : Maximum generated output power

V : Electrical potential

 V_{OC} : Open circuit voltage

I : Electric current

J: Current density

E : Electric field intensity

B: Magnetic field

R: Electrical resistance

 R_{in} : Internal combined electrical resistance

l : Distance between contacts

N : Number of thermoelectric legs

 V_H : Hall voltage

 R_H : Hall coefficient

: Boltzmann constant

h : Planck's constant

e: Electron charge

 m^* : Effective mass of charge carrier

: Carrier concentration

 E_F : Fermi energy

: Lorenz number L

: Electron mobility μ

: Peltier coefficient π

: Thomson coefficient β

: Heat flux

: Heat flow Q

: Thermal diffusivity α

: Density ρ

: Specific heat capacity c_p

: Specific heat capacity of solids c_{ν}

R : Gas constant

dt

: Temperature gradient dx

: Number of atoms Ν

: Molar mass M

 \boldsymbol{A} : Cross-sectional area

: Length or leg height L

d : Sample thickness

: Response variable yield y

: Reaction time ζ1

: Reaction temperature ζ_2

λ : Wavelength

D: Average crystalline size

β : Full width at half maximum intensity

 θ : Bragg's diffraction angle

: Thermal expansion coefficient α

 \boldsymbol{C} : Specific heat capacity \dot{q} : Heat generation rate

D: Electric flux density

Π : Peltier coefficient

 ∇T : Temperature gradient

 T_s : Surface temperature

h : Convection heat transfer coefficient

 T_{∞} : Temperature of the medium

ABBREVIATIONS

TE : Thermoelectric

TEG : Thermoelectric Generator

FEM : Finite Element Method

FVM : Finite Volume Method

HIP : Hot Isostatic Pressing

CIP : Cold Isostatic Pressing

HP : Hot Pressing

CP : Cold Pressing

SPS : Spark Plasma Sintering

DTA-TG: Differential Thermal Analysis-Thermogravimetry

XRD : X-ray Diffraction

XPS : X-ray Photoelectron Spectroscopy

SEM : Scanning Electron Microscopy

TEG_{RP}: Thermoelectric generator with rectangular prism legs

TEG_C: Thermoelectric generator with cylindrical legs

DSC : Differential Scanning Calorimetry

DOE : Design of Experiments

RSM : Response Surface Methodology

BE : Binding Energy

FWHM : Full Width at Half Maximum Intensity

INTRODUCTION

1.1. THIS IS A FIRST LEVEL HEADING

Recent advances in nanoscale transport have been summarized by [1], who provided a detailed theoretical framework for phonon drag effects.

For further background on non-linear oscillations, see the discussion by Jones [2].

Experimental validation of metamaterial cloaking at microwave frequencies was reported by [3].

Monte Carlo studies of lattice gauge models at finite temperature were explored by [4].

Nguyen's doctoral work [5] established a correlation between lattice strain and superconducting transition temperature.

The velocity field data used for model verification were retrieved from the Dryad repository [6].

Neural-network modeling was implemented using the open-source TensorFlow library [7].

A concise overview of the fundamental postulates can be found on Wikipedia [8].

Environmental compliance in laboratory procedures followed ISO 14001:2015 [9].

A broad philosophical overview of foundational issues is collected in an Oxford handbook [10].

For a focused chapter inside a book, see Penrose's discussion of spinors [11].

Deep residual networks were introduced at [12].

The full ICML 2020 volume is available as an edited proceedings from PMLR [13].

Shannon's master's thesis established the algebraic basis of switching circuits [14].

Turing's Princeton dissertation laid groundwork for ordinal logics [15].

Strain data for GW150914 can be obtained from LOSC [16].

Many numerical examples here were produced with NumPy [17].

Physical constants are retrieved from NIST's online database [18].

Time formatting follows the ISO date/time standard [19].

1.1.1. This is a second level heading

Classical mechanics describes the motion of a particle of mass m under a force \mathbf{F} through Newton's second law:

$$\mathbf{F} = m\mathbf{a}.\tag{1.1}$$

Equation (1.1) remains a cornerstone of physics [20].

For waves on a string, the standard one-dimensional wave equation is

$$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2},\tag{1.2}$$

where $v = \sqrt{T/\mu}$ is the wave speed determined by tension T and linear density μ [21].

In quantum mechanics, the time-independent Schrödinger equation reads

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi,\tag{1.3}$$

first introduced by Schrödinger in 1926 [22].

1.2. FIGURE EXAMPLES

Scientific documents often include figures to illustrate results, experimental setups, or conceptual frameworks. Figure 1.1 shows a single image with a caption. The convention for captions and references follows guidelines in [23].

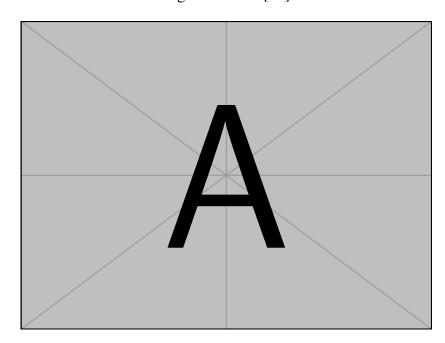
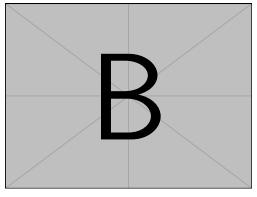
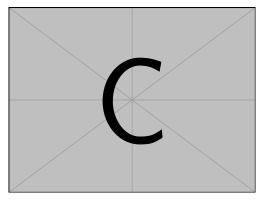




Figure 1.1. A single placeholder example image.

Multiple related panels can be combined as subfigures (Fig. 1.2); see general practices for composite figures in [24].

(a) First subfigure.

(b) Second subfigure.

Figure 1.2. Example of two related subfigures side by side.

Larger works often combine multiple figures in a sequence to show progressive results (Fig. 1.3), following presentation techniques from [25].

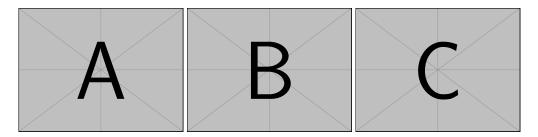


Figure 1.3. A sequence of related figures illustrating progressive results.

Finally, figures may also appear in floating environments with wide layouts such as a two-column article (not shown here), or may include multiple panels referenced collectively (e.g., Figs. 1.1–1.3).

1.3. TABLE EXAMPLES

Experimental data often appear in tabular form. Table 1.1 lists selected fundamental constants recommended by CODATA [26]. These values are widely used in numerical simulations and physical calculations.

Table 1.2 shows sample material properties adapted from standard references on solidstate materials [27]. Such data are frequently used to compare thermal and mechanical performance.

Table 1.1. Selected fundamental physical constants (CODATA 2018) [26].

Quantity	Symbol	Value
Speed of light	c	2.9979×10^8 m/s
Planck constant	h	$6.6261 \times 10^{-34} \text{ J} \cdot \text{s}$
Elementary charge	e	$1.6022 \times 10^{-19} \text{ C}$
Boltzmann constant	k_{B}	$1.3806 \times 10^{-23} \text{ J/K}$

Table 1.2. Typical properties of selected engineering materials [27].

Material	Density (g/cm ³)	Elastic Modulus (GPa)	Thermal Conductivity (W/m·K)
Aluminum	2.70	69	237
Copper	8.96	110	401
Steel (AISI 1020)	7.87	200	51
Silicon	2.33	130	149

In social-science or management contexts, smaller textual tables are also common. Table 1.3 illustrates a Likert-scale example as used in survey analysis [28].

Table 1.3. Example of a Likert-scale question and responses [28].

Statement	SD	D	N	A	SA
Physics is enjoyable	3	8	15	20	4
Mathematics is easy	5	10	12	18	5

Table 1.3 uses the abbreviations: SD (Strongly Disagree), D (Disagree), N (Neutral), A (Agree), SA (Strongly Agree).

1.4. SECTIONING AND CROSS-REFERENCING

This section demonstrates how to create hierarchical headings and cross-references. Always assign each major part of your thesis a logical structure:

- \section{...}
- \subsection{...}
- \subsubsection{...}

For example, the methodology details are explained in Section 1.4.1, while the results are summarized in Section 1.4.2.

1.4.1. Methodology Example

The study followed a two-stage process: simulation and verification. The simulation parameters are listed in Table 1 (not shown here). Cross-referencing is done using commands like \ref{sec:results}.

1.4.2. Results Example

This subsection provides the findings, which are discussed further in Section 1.5.

1.4.2.1. Statistical Analysis

Descriptive and inferential statistics were used to interpret data.

1.5. DISCUSSION

Section 1.4 described the use of sections and labels; here we connect those references logically in the narrative.

1.6. LISTS

Lists help organize information clearly. LaTeX supports both numbered and bulleted lists, as shown below.

1.6.1. Numbered List (Enumerate)

Use numbered lists for procedural steps:

1. Review existing literature.

2. Define the problem statement.

3. Design and conduct experiments.

4. Analyze data and interpret results.
5. Draw conclusions and propose future work.
1.6.2. Bulleted List (Itemize)
Use bulleted lists for unordered information:
• Experimental setup
Numerical model
Analytical solution
You can also nest lists if necessary:
• Input parameters:
1. Temperature
2. Pressure

- 3. Volume
- Output:
 - 1. Energy
 - 2. Entropy

1.7. INLINE MATHEMATICS

Mathematics can appear either inline or displayed separately. Inline math is enclosed within dollar signs \$...\$, and it flows naturally with the text.

For example, the relationship between distance d, velocity v, and time t is expressed as d = vt. Similarly, the kinetic energy is given by $E_k = \frac{1}{2}mv^2$, and the potential energy by $E_p = mgh$.

For larger expressions, use display mode:

$$E = \sqrt{(pc)^2 + (m_0c^2)^2}$$

Equation numbering can also be added with the equation environment.

1.8. QUOTATIONS AND FOOTNOTES

Proper quotation formatting improves readability and avoids plagiarism. Short quotations are included inline, for example: According to Einstein, 'Imagination is more important than knowledge.'

For longer excerpts, use the quote environment:

Science is a way of thinking much more than it is a body of knowledge.

—Carl Sagan

You may also add explanatory or bibliographic comments using footnotes. For instance, quantum mechanics was formulated in the early twentieth century, which revolutionized physics.

Footnotes should be concise and supplementary, never containing major arguments or references that belong in the bibliography.

¹Historically, the development involved both matrix mechanics (Heisenberg, 1925) and wave mechanics (Schrödinger, 1926).

THEORETICAL BACKGROUND

EXPERIMENTAL AND THEORETICAL STUDIES

RESULTS AND DISCUSSION

CONCLUSION AND FUTURE PLAN

REFERENCES

- [1] J. A. Smith, 'Advanced methods in quantum transport', in *Handbook of Nanoscience and Engineering*, L. Brown and K. Green, Eds., Cham, Switzerland: Springer, 2021, 345–378.
- [2] E. R. Jones, 'Section on non-linear oscillators', in *Classical Mechanics Third Edition*. Cambridge, UK: Cambridge University Press, 2018, ch. 12, 289–320.
- [3] M. Lee and Q. Zhao, 'Experimental characterization of metamaterial cloaking at microwave frequencies', in *Proceedings of the 2019 IEEE International Conference on Electromagnetics and Applications (ICEA2019)*, Tokyo, Japan, 2019, 112–117.
- [4] M. T. Garcia, 'Monte carlo simulations of lattice gauge theories', M.S. thesis, Imperial College London, 2022.
- [5] A. H. Nguyen, 'High-temperature superconductivity in iron-based compounds', Ph.D. dissertation, Stanford University, 2020.
- [6] P. Hansen and S. Miller, Open ocean turbulence velocity fields dataset, 2017.
- [7] Google Brain Team, *Tensorflow: Large-scale machine learning on heterogeneous systems*, version 1.0, 2015.
- [8] W. Foundation. 'Quantum mechanics wikipedia, the free encyclopedia.' (2025), [Online]. Available: https://en.wikipedia.org/wiki/Quantum_mechanics.
- [9] Iso 14001:2015 environmental management systems requirements with guidance for use, International Organization for Standardization, 2015.
- [10] R. W. Batterman, Ed., 'The Oxford Handbook of Philosophy of Physics', Oxford: Oxford University Press, 2013.
- [11] R. Penrose and W. Rindler, 'Spinors and space-time, volume 1: Two-spinor calculus and relativistic fields', in *Spinors and Space-Time*, *Vol. 1*. Cambridge: Cambridge University Press, 1987, ch. 1, 1–30.

- [12] K. He, X. Zhang, S. Ren and J. Sun, 'Deep residual learning for image recognition', in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016, 770–778.
- [13] H. Daumé III and A. Singh, Eds., 'Proceedings of the 37th International Conference on Machine Learning', 119, Online: PMLR, 2020.
- [14] C. E. Shannon, 'A symbolic analysis of relay and switching circuits', M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1937.
- [15] A. M. Turing, 'Systems of logic based on ordinals', Ph.D. dissertation, Princeton University, 1938.
- [16] LIGO Open Science Center, *Gw150914 open data*, LIGO Open Science Center (LOSC), 2016.
- [17] C. R. Harris *et al.*, *Numpy*, version 1.x, 2020.
- [18] NIST. 'Codata recommended values of the fundamental physical constants.' (2018), [Online]. Available: https://physics.nist.gov/constants.
- [19] *Iso* 8601-1:2019 date and time—representations for information interchange—part 1: Basic rules, International Organization for Standardization, 2019.
- [20] I. Newton, 'Philosophiae Naturalis Principia Mathematica.' London: Royal Society, 1687.
- [21] A. P. French, 'Vibrations and Waves.' New York: W. W. Norton & Company, 1971.
- [22] E. Schrödinger, 'Quantisierung als eigenwertproblem', *Annalen der Physik*, 79, 361–376, 1926.
- [23] H. Kopka and P. W. Daly, 'A Guide to LATEX', 4th ed. Boston, MA: Addison-Wesley, 2003.
- [24] E. R. Tufte, 'The Visual Display of Quantitative Information', 2nd ed. Cheshire,CT: Graphics Press, 2001.
- [25] E. R. Heath, 'Creating Illustrations with LATEX.' Cham, Switzerland: Springer, 2018.
- [26] P. J. Mohr, D. B. Newell, B. N. Taylor and E. Tiesinga, 'Codata recommended values of the fundamental physical constants: 2018', *Reviews of Modern Physics*, 93(2), 025010, 2021.

- [27] W. D. Callister and D. G. Rethwisch, 'Materials Science and Engineering: An Introduction', 10th ed. Hoboken, NJ: John Wiley & Sons, 2018.
- [28] R. Likert, 'A technique for the measurement of attitudes', *Archives of Psychology*, 140, 1–55, 1932.

CURRICULUM VITAE

write your CV here