LSCM xyz: big title

Lecture 1 subtitle

Dr. x
mail@mm.com
May 13, 2020

There Is No Largest Prime Number Theorem and Proof

Theorem 1 (Example)

There is no largest prime number.

Proof.

The invertible elements in a field form a group under multiplication. In particular, the elements

$$
1,2, \ldots, p-1 \in \mathbb{Z}_{p}
$$

form a group under multiplication modulo p. This is a group of order $p-1$. For $a \in \mathbb{Z}_{p}$ and $a \neq 0$ we thus get $a^{p-1}=1 \in \mathbb{Z}_{p}$. The claim follows.

1. Section name

1.1 Subection name

The environments Lemma, Proposition, Corrollary and Definition

Lemma 1 (Title of lemma)

There is no largest prime number.

Proposition 1 (Title of proposition)

There is no largest prime number.

Corollary 1 (Title of corrollary)

There is no largest prime number.

Definition 1 (Title of definition)

There is no largest prime number.

Enumerate environment

1 Suppose p were the largest prime number.
2 Let q be the product of the first p numbers.
3 Then $q+1$ is not divisible by any of them.
4 But $q+1$ is greater than 1, thus divisible by some prime number not in the first p numbers.

Itemize environment

■ one

- two

Figure, example and alert block

Figure 1: Caption of figure

Example 2

$■$ Lists change colour after the environment.

Important message

If a lot of text should be highlighted, it is a good idea to put it in a box.

Example block

Title of block

If a lot of text should be highlighted, it is a good idea to put it in a box.

Example table

Table 1: Table caption
Text center
Text left align
Text right align

