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Chapter 1

Introduction

Cyclotomic polynomials play an important role in several areas of mathematics and their study has a very
long history, goes back at least to Gauss. Cyclotomic polynomials appear in the solution of the problem
of which regular n-gons are constructible with straightedge and compass (Gauss–Wantzel theorem); ele-
mentary proofs of the existence of infinitely many prime numbers equal to 1, respectively −1, modulo n,
special case of Dirichlet’s theorem on primes in arithmetic progressions; Witt’s proof of Wedderburn’s lit-
tle theorem that every finite domain is a field; the “cyclotomic criterion” in the study of primitive divisors
of Lucas and Lehmer sequences; lattice-based cryptography etc.

In particular, the coefficients of cyclotomic polynomials have been intensively studied by several authors,
in the last 10 years there has been a burst of activity in this field of research. Several authors has classified
different types of cyclotomic polynomial in terms of their coefficient, degree etc. Some authors are also
working on the relation between these polynomials and prime numbers. This particular area of Mathemat-
ics is not explored enough and there’s lot of interesting stuff to do with these polynomials. In fact it’s not
an easy task to compute these polynomials for large values of n. But recently Arnold and Monagan have
[1] developed a method to compute these polynomials relatively faster.

Figure 1.1: Coefficients of Φn(z) =
∑
aKz

k for n = 3.5.7.11.13.17.19 using 552960 data points
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Chapter 2

Some Basic Concepts

“Cyclotomic” term is originated from the word “Cyclotomy” which means cutting a circle into equal
parts. In general, eiθ makes spiral curve. But, if we restrict θ = 2π, it produces a unit circle. Using Euler’s
identity , we can conclude that,

e2iπ = 1 =⇒
(
ei

2π
n

)n
= 1

If we denote ζn := ei
2π
n , then the above equation becomes ζnn = 1. ζn is called nth root of unity. Look

closely that we have actually divided the circle into n equal parts just by diving the angle 2π.
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Fig : Cutting a circle into 12 equal parts.

We can write (
ζn

k
)n

= 1,∀k ∈ N

The collection {ζnk :
(
ζn

k
)n

= 1} forms a group under complex multiplication and the elements are roots
of the polynomial zn − 1 for for each different n. We denote this group as µn, group of nth roots of unity.

If d is a divisor of n and ζ is a dth root of unity, then ζ is also a nth of unity, since
ζn = (ζd)

n
d = 1

Hence, we can conclude that µd ⊆ µn for all d|n.
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Examples:
(1) Let’s divide a circle into 2 equal parts i.e. n = 2. k takes values 1,2. Then

ζ2 = eπi = −1 and ζ2
2 = e2πi = 1

So, The associated group µ2 = {1,−1}.

(2) Let’s divide a circle into 6 equal parts i.e. n = 3. k takes values 1,2,3. Then

ζ3 = e
2
3
πi =

−1 +
√
3i

2
and ζ3

2 = e
4
3
πi =

−1−
√
3i

2
and ζ3

3 = e
6
3
πi = 1

So, The associated group µ3 = {1, −1+
√
3i

2
, −1−

√
3i

2
}.

We are interested in the nth roots of unity as a group is because of the following result; which allows us to
derive properties of the nth roots of unity by looking at more familiar group.

Lemma 1. The mapping ψ : Zn → µn, given by ψ(k) = ζn
k is a group isomorphism.

Proof. ψ is one-one and onto. Also, for j, k ∈ Zn, say that, j + k ≡ r ( mod n) i.e. j + k = nq + r, for
some q ∈ Z.

ψ(j + k) = ψ(r) = ζn
r = ζn

j+k−nq = ζn
jζn

k = ψ(j)ψ(k)

ψ is operation preserving, Hence ψ is an isomorphism.

Definition 1. (Primitive nth roots of unity). A primitive nth root of unity is an nth root of unity whose
order is n.

So, in our above discussion the generators of the group µn are primitive nth roots i.e. if ζn is a generator
of µn then it follows that < ζn >= µn.

Remark 1. If n is a positive integer, then the primitive nth roots are

{ζnk : 1 ≤ k ≤ n, gcd(k, n) = 1}

Definition 2. (nth Cyclotomic Polynomial). For any positive integer n the nth cyclotomic polynomial,
Φn(x), is given by

Φn(x) = (x− ζ1)(x− ζ2)...(x− ζs)

where, ζ1, ζ2, ..., ζs are primitive nth roots of unity.

Using the above remark we can also write nth cyclotomic polynomials as follows,

Φn(x) :=
∏

1≤k≤n
gcd(n,k)=1

(x− ζn
k)

Now, We have a formal definition for the cyclotomic polynomials and some related things. Let’s explore
some of their simpler properties.

Theorem 1. If n is a positive integer, then Φn(x) is monic and its degree is ϕ(n), where ϕ is the Euler phi
function.
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Proof. According to Definition 2,
Φn(x) :=

∏
1≤k≤n

gcd(n,k)=1

(x− ζn
k)

So, it is written as product of linear factors. Number of linear factors depend on the number of different
primitive nth roots of unity which is precisely ϕ(n). In each linear factor, x has highest degree 1 and
coefficient 1. So, the product of ϕ(n) linear factors will contain x with highest degree ϕ(n) and coefficient
1. Hence, Φn(x) is monic and its degree is ϕ(n).

Theorem 2. Let n be a positive integer, then

xn − 1 =
∏
d|n

Φd(x)

Proof. We already know that µn contains all nth roots of unity. So, we can write

xn − 1 =
∏
ζ∈µn

(x− ζ)

Each, ζ is not a primitive. Now, we group together those factors (x− ζ) where ζ is an element of order d
in µn and ζ ∈ µd where d|n. This means ζ is a primitive of µd. Then we obtain,

xn − 1 =
∏
d|n

∏
ζ∈µd

ζ primitive

(x− ζ) =
∏
d|n

Φd(x)

Remark 2. Incidentally, comparing the degrees of both side of the above equation, we get the identity,
n =

∑
d|n φ(d)

There is a beautiful connection between cyclotomic polynomials and Möbius inversion formula. Many
famous results are proved in terms of this function. Before giving the proof of the famous identity we
should first define the Möbius function and a short proof regarding the Möbius inversion formula.

Definition 3. (Möbius function) Suppose n is a positive integer. Then the function µ : N → {−1, 0, 1}
given by

µ(n) =


1 if n = 1 for all k
(−1)k if n = p1p2...pk for distinct primes pi
0 if otherwise.

is called the Möbius function

Theorem 3. Suppose that f, g : Z+ → Z+ functions such that

f(n) =
∏
d|n

g(d)

Then,

g(n) =
∏
d|n

f(
n

d
)µ(d)
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Proof. We have, ∏
d|n

f(
n

d
)µ(d) =

∏
d|n

 ∏
m|(n/d))

g(m)

µ(d)

=
∏
m|n

 ∏
d|(n/m)

g(m)µ(d)


=
∏
m|n

g(m)
∑

d|(n/m) µ(d)

= g(n)

Since, ∑
d|(n/m)

µ(d) =

{
1 if (n/m) = 1

0 if otherwise

Theorem 4. If µ(n) denotes the Möbius function, then

Φn(x) =
∏
d|n

(x
n
d
−1)µ(d) =

∏
d|n

(xd − 1)µ(
n
d
)

Proof. In theorem 3, put f(n) = xn − 1 and g(d) = Φd(x).

Theorem 5. Let n =
∏r

k=1 pk
ak and m =

∏r
k=1 pk

bk be a positive integers such that 1 ≤ bk ≤ ak, then
Φn(x) = Φm(x

(n/m))

Proof. Case 1: d|n but d ∤ m

d is not square free, so µ(d) = 0 means that (xn/d − 1)0 = 1.

Case 2: d | n and d | m

Therefore,

Φn(x) =
∏
d|n

(
xd − 1

)µ(n
d
)

=
∏
d|n

(
x

n
d − 1

)µ(d)
=
∏
d|m

(
x

n
d − 1

)µ(d)
=
∏
d|m

((
x

n
m

)m
d − 1

)µ(d)
=
∏
d|m

((
x

n
m

)d − 1
)µ(m

d
)

= Φn(x
(n/m))
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Corollary 1. Let p be a prime and m a positive integer. If p | m, then Φpm(x) = Φm(x
p).

Theorem 6. Let p be a prime and m be a positive integer. If p ∤ m, then Φpm(x) =
Φm(xp)
Φm(x)

Proof. Given that, p ∤ m. If we can write,

Φpm(x) =
∏
d|pm

(
xd − 1

)µ(pm/d)

=
∏
d|pm
p|d

(
xd − 1

)µ(pm/d)
∏
d|pm
p∤d

(
xd − 1

)µ(pm/d)

=
∏
n|m

(xpn − 1)µ(pm/pn)
∏
d|m

(
xd − 1

)µ(pm/d)
[Since, p | d, hence ∃ some n such that d = pn]

= Φm(x
p)
∏
d|m

(
xd − 1

)−µ(m/d)

=
Φm(x

p)

Φm(x)

Theorem 7. If n is an odd integer greater than 1, then Φ2n(x) = Φn(−x)

Proof. Consider,

Φ2n(x) =
∏
d|2n

(
xd − 1

)µ(2n/d)
=
∏
d|2n
2|d

(
xd − 1

)µ(2n/d)∏
d|2n
2∤d

(
xd − 1

)µ(2n/d)
=
∏
k|n
2|d

(
x2k − 1

)µ(2n/2k)∏
d|n

(
xd − 1

)µ(2n/d)
[Since, 2 | d, hence ∃ some k such that d = 2k]

=
∏
d|n

(
xd − 1

)µ(n/d) (
xd + 1

)µ(n/d)∏
d|n

(
xd − 1

)−µ(n/d)
[As, µ(2m) = −µ(m) for odd m]

=
∏
d|n

(
xd + 1

)µ(n/d)
=
∏
d|n

(
−xd − 1

)µ(n/d)
= Φn(−x)

Theorem 8. For all positive integers n > 1, we have xΦ(n)Φn(1/x) = Φn(x)

Proof. Now consider,

Φn(1/x) =
∏
d|n

(
1

xd
− 1

)µ(n
d
)

=
∏
d|n

(
1− xd

)µ(n
d
)
∏
d|n

(
1

xd

)µ(n
d
)
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Therefore, we get,

x
∑

d|n dµ(n
d
)Φn(1/x) =

∏
d|n

(−1)µ(
n
d
) (xd − 1

)µ(n
d
)

=
∏
d|n

(−1)
∑

d|n µ(n
d
)
∏
d|n

(
xd − 1

)µ(n
d
)

= Φn(x)

So, we have explored some beautiful properties of cyclotomic polynomials that are necessary for our
further studies of the subject. These polynomials are so special because of it’s irreducibility over Q. We
now extend our study to prove the irreducibility of these polynomials over Q.

2.1 Irreducibility of Cyclotomic Polynomial

It is very basic result in number theory that Φn(x) is irreducible for every positive integer n. Our main
objective here is to present a classical proof of this theorem. Before going to the main result, we first give
some well known results to have it available when we present the main result. The first result that we need
about polynomials is Gauss’s lemma, which we state in the form in which we will use it.

Lemma 2. If a monic polynomial in Q[x] divides a monic polynomial with integral coefficients, then its
coefficients are all integral.

Proof. Let, f(x) = xn + an−1x
n−1 + ... + a0 ∈ Q[x] be a monic polynomial which divides a monic

polynomial P (x) ∈ Z[x], and let g(x) ∈ Q[x] be the quotient,

f(x)g(x) = P (x) ∈ Z[x]

In the above equation, P (x) and f(x) are monic, so g(x) is monic too. Let

g(x) = xm + bm−1x
m−1 + ...+ b0 ∈ Q[x]

Claim: The coefficients a0, a1, ..., an−1 are all integers.
Assume that, the above claim is not true. Let, d be the least common multiple of the denominators of
a0, a1, ..., an−1; Then,

f =
1

d

(
dxn + a′n−1x

n−1 + ...+ a′0
)

Where, a′0, a
′
1, ..., a

′
n−1, d are relatively prime integers. Similary, let

d =
1

e

(
exm + b′m−1x

m−1 + ...+ b′0
)

Where, b′0, b
′
1, ..., b

′
n−1, e are relatively prime integers. Let p be a prime number which divides d. Since

a′0, a
′
1, ..., a

′
n−1, d are relatively prime, there is a largest index k such that p does not divide a′k. Let also

there is a largest index l such that p does not divide b′l (if p does not divide e, let l = m and b′l = e). Since
f(x)g(x) = P (x) ∈ Z[x] , it follows that,(

dxn + a′n−1x
n−1 + ...+ a′0

) (
exm + b′m−1x

m−1 + ...+ b′0
)
∈ deZ[x].
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In particular the coefficientof xk+l in the product is divisible by p since p divides d, i.e.

∑
i+j=k+l

a′ib
′
j = ...+ a′k−1b

′
l+1 + a′kb

′
l + a′k+1b

′
l−1 + ... ≡ 0 mod p

Since, a′i ≡ 0 mod p for i > k and b′j ≡ 0 mod p for j > l, we have
∑

i+j=k+l a
′
ib

′
j ≡ 0 mod p.

Therefore from previous equation,
a′kb

′
l ≡ 0 mod p

It’s a contradiction! since p does not divide a′k nor b′l. Hence, our assumption is wrong and coefficients
a0, a1, ..., an−1 are all integers.

Lemma 3. Let p(x) and q(x) be polynomials with coefficients in some field F , and assume p(x) is irre-
ducible in F [x]. If p(x) and q(x) have a common root in some field K containing F , then p(x) divides
q(x).

Proof. If, p(x) does not divide q(x), then p(x) and q(x) are relatively prime, because p(x) is irreducible.
Then there exists polynomials u(x) and v(x) in F [x] such that

p(x)u(x) + q(x)v(x) = 1

Substituting in this equation the common root s of p(x) and q(x) for the indeterminate x, we obtain

p(s)u(s) + q(s)v(s) = 1 in K

Since, p(s) = q(s) = 0, the above equation yields 0 = 1 in K, a contradiction! Therefore, p(x) divides
q(x).

Lemma 4. Let f(x) be a monic irreducible factor of Φn(x) in Q[x] and let p be a prime number that does
not divide n. If ω ∈ C is a root of f(x), then ωp is also a root of f(x), so

f(ω) = 0 =⇒ f(ωp) = 0

Proof. Assume that, f(ω) = 0 but f(ωp) ̸= 0 and our goal is to get a contradiction. Since, Φn(x) divides
(xn − 1), we have

xn − 1 = f(x)g(x)

for some monic polynomial g(x) ∈ Q[x]. Since f(ω) = 0, it follows that ωn = 1, hence also, raising
each side to the pth power, (ωp)n = 1. In other words, ωp is a root of xn − 1. Since on the other hand it
was assumed that f(ωp) ̸= 0, we conclude g(ωp) = 0. This shows that ω is a root of g(xp). Therefore by
lemma 2, f(x) divides g(xp). Let, h(x) ∈ Q[x] be a monic polynomial such that

g(xp) = f(x)h(x)

11



Using Gauss’s lemma, we can conclude from the above equations that f(x), g(x) and h(x) are in Z[x].
Therefore, we may consider the polynomials f̄(x), ḡ(x) and h̄(x) whose coefficients are the congruence
classes modulo p of the coefficients f(x), g(x) and h(x) respectively. By reduction modulo p, we get from
the above equations,

xn − 1 = f̄(x)ḡ(x) in Fp[x]

and,
ḡ(xp) = f̄(x)h̄(x) in Fp[x]

Now, Fermat’s theorem shows that ap = a for all a ∈ Fp. Therefore, if

ḡ(x) = a0 + a1x+ ...+ ar−1x
r−1 + xr

we also have,
ḡ(x) = a0

p + a1x
p + ...+ ar−1

pxr−1 + xpr

Since, (u+ v)p = up + vp in Fp, it follows that

ḡ(xp) =
(
a0 + a1x+ ...+ ar−1x

r−1 + xr
)p

= [ḡ(x)]p in Fp

Hence, we get from above,
[ḡ(x)]p = ḡ(xp) = f̄(x)h̄(x) in Fp[x]

and this shows that f̄(x) and ḡ(x) are not relatively prime. Let, φ(x) ∈ Fp[x] be a non-constant common
factor of f̄(x) and ḡ(x). So, we can conclude that φ(x) divides xn − 1. Let

xn − 1 = [φ(x)]2ψ(x) in Fp[x]

Comparing the derivatives of both sides, we obtain

nxn−1 = φ(x) (2∂φ(x)ψ(x) + φ(x)∂ψ(x))

Hence, φ(x) divides both nxn−1 and xn. But, according to the hypothesis p ∤ n, so nxn−1 and xn are
relatively prime in Fp[x] and they do not have any common factor. So we come to a contradiction. So our
assumption that f(ωp) ̸= 0 was absurd.

Now, we are ready to going through of our first classical proof inspired by some ideas of Dedekind.
Though Dedekind gave a stronger result, we use his idea to prove the weaker one first. Then we will also
describe the stronger result. Let’s give a proposition first that is necessary for our proof.

Proposition 1. If a polynomial is divisible by pairwise relatively prime polynomials then it is divisible by
their product.

Proof. Let, P1(x)P2(x)...Pr(x) be pairwie relatively prime polynomials which divide a polynomial f(x).
We argue by induction on r, the case r = 1 being trivial. By induction hypothesis,

f(x) = P1(x)P2(x)...Q(x)

for some polynomial Q[x]. Since, Pr(x) divides P (x) so Pr(x) divides Q(x). Hence P1(x)P2(x)...Pr(x)
divides P (x).

Theorem 9. For every integer n ≥ 1, the cyclotomic polynomial Φn(x) is irreducible over Q.
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Proof. Let f(x) be a monic irreducible factor of Φn(x) in Q[x]. Let ζ be a root of f(x). Then ζ is a root
of Φn(x). Since Φn(x) divides xn − 1, so ζ is also a root of xn − 1 i.e. ζ is a primitive nth root of unity.
We know that any other primitive nth root of unity has the form ζk where k is an integer relatively prime
to n between 0 and n. Factoring k into prime factors (not necessarily distinct)

k = p1...ps

we find that,

f(ζ) = 0 =⇒ f(ζp1) = 0 =⇒ f(ζp1p2) =⇒ ... =⇒ f(ζp1...ps−1) = 0 =⇒ f(ζk) = 0

Thus, f(x) has as root every primitive nth root of unity i.e. every root of Φn(x). Using the above proposi-
tion we can conclude that, Φn(x) divides f(x). Also we have assumed that f(x) is a factor of Φn(x) and
both are monic. Hence, Φn(x) = f(x). So, Φn(x) is irreducible over Q.

In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to
Q, the field of rational numbers. For m ≥ 1, Let µm = e

2πi
m ∈ C. This is a primitive mth root of unity.

The mth cyclotomic field is the extension Q(µm) of Q, generated by µm. We now give a powerful result
of irreducibility of cyclotomic polynomials over Q(µm) due to Dedekind which can be state as follows,

Theorem 10. If m and n are relatively prime integers, then Φn(x) is irreducible over Q(µm).

Proof. Assume that, Φn(x) is reducible over Q(µm) and f(x) be a monic irreducible factor of Φn(x) in
Q(µm)[x]. let ζ ∈ C be a root of f(x). It suffices to prove

f(ζk) = 0

for every integer k relatively prime to n between 0 and n.

Let η be a primitive mth root of unity. Every element in Q(µm) can be expressed uniquely as a linear
combination with rational coefficients of the mth roots of unity other than 1. Hence, Q(µm) = Q(η) and
f(x) ∈ Q(η). Clearly, every coefficient of f(x) is a polynomial expression of η with rational coefficients.
Basically, we want see f(x) over Q and it’s nature over Q is proved earlier which may be helpful in this
strong case. Therefore,

f(x) = φ(η, x)

for some polynomial φ(y, x) ∈ Q[y, x]

Let now ρ = ζη and we see that ρ is mnth root of unity as m and n are relatively prime. Also, there exists
integers r and s such that

mr + ns = 1

As ζn = 1 and ηm = 1, this equation implies that,

13



ζ = ζmr = ρmr

and

η = ηns = ρns

Since f(ζ) = 0, we have φ(η, ζ) = 0, or

φ(ρns, ρmr) = 0

It is easy to see that, Φmn(x) and φ(xns, xmr) have same roots. Φmn(x) and φ(xns, xmr) both have coef-
ficients from Q and using above theorem, we can conclude that Φmn(x) is irreducible over Q. So, from
Lemma 2, it can be easily verified that Φmn(x) divides φ(xns, xmr). It follows that,

φ(ωns, ωmr) = 0

for every primitive mnth root of unity ω.

For any integer k relatively prime to n between 0 and n, let

l = kmr + ns

Since, mr + ns = 1, we have mr ≡ 1 mod n and ns ≡ 1 mod m, hence

l ≡ k mod n

and

l ≡ 1 mod m

It follows that, ζ l = ζk and ηl = η, and since we already observed that ζ = ρmr and η = ρns, we have

ζk = ρlmr

and

η = ρlns

From the above congruence relations it is clear that, l is also relatively prime to mn. Therefore, ρl is a
primitive mnth root of unity and we can write,

φ(ρlns, ρlmr) = 0 =⇒ φ(η, ζk) = f(ζk) = 0

Hence, our assumption is wrong and Φn(x) is irreducible over Q(µm).

[2]

14



Chapter 3

Coefficients of Cyclotomic Polynomial

We have already defined cyclotomic polynomials and some of it’s fundamental properties. For every
positive integer n, let us write,

Φn(x) =

ϕ(n)∑
i=0

an(i)x
i

It is well known that the coefficients, an(i) ∈ Z . These coefficients are of particular interest and have
been intensively studied by several authors. We denote the set of all coefficients of Φn(x) by A(n) :=
{an(i) : 0 ≤ i ≤ ϕ(n)}. Moreover we let θ(n) := #{0 ≤ i ≤ ϕ(n) : ai(n) ̸= 0} be the number of
nonzero coefficients. It satisfies the trivial inequality 2 ≤ θ(n) ≤ ϕ(n) + 1, which are optimal when one
considers the cases m = 1 or m = p, a prime number. Before going to further discussion we have to
define some definitions and terminologies. These are given as follows.

Definition 4. (Height of Cyclotomic polynomials) The height of a cyclotomic polynomial Φn(x), is the
highest absolute value of the coefficients, denoted by A(n), n ∈ N. is the degree of the polynomial.

Definition 5. (Flat cyclotomic polynomials) A cyclotomic polynomial Φn(x) is said to be flat if the highest
absolute value of the coefficients never exceeds 1.

Definition 6. (Middle term of cyclotomic polynomial ) Let Φn(x) be a cyclotomic polynomial, the coeffi-
cient of x

φ(n)
2 , denoted by M(Φn(x)), is called the middle term coefficient of Φn(x)

To have a brief idea of the above terms, we give an example here.

Example 1. For n = 6, we have the cyclotomic polynomial, Φ6(x) := x2 − x+ 1.

Here,

• A(6) = 1

• M(Φ6(x)) = 1

Φ6(x) is a flat cyclotomic polynomial.

So, we have some basic definitions of different terminologies and their notations. It can be seen that the
coefficients are only {−1, 0,+1} up to n = 104 i.e. A(n) = 1, ∀n < 105. For n = 105, there is different
coefficient other than the above set. So, n = 105 is the smallest value of n for which A(n) > 1. There are
infinitely many cyclotomic polynomials, if we increase the value of n, we will get cyclotomic polynomials
of different heights and with different properties.
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3.1 Structure of cyclotomic polynomials

Generally, there is no explicit non-recursive formula for computing the coefficients of Φn(x). In this
section we summarize some of the well known formulas/ descriptions for determining the structure of the
polynomial Φn(x). We first give some lemmas that can be easily proved from the early theorems of this
paper.

Lemma 5. an(i) ∈ Z for all i, 0 ≤ i ≤ ϕ(n), n ∈ N.

Lemma 6. an(i) = an(ϕ(n) − i) for all i, 0 ≤ i ≤ ϕ(n), n(> 1) ∈ N. That is, the coefficients of
cyclotomic polynomials has palindromic property.

Definition 7. (Order of cyclotomic polynomial) Let n = p1.p2...pk be a product of k distinct prime num-
bers. Then Φn(x) is called a cyclotomic polynomial of order k.

Remark 3. Φp1p2(x) and Φp1p2p3(x) are called binary (k = 2) and ternary (k = 3) cyclotomic poly-
nomial respectively, the binary and ternary are the first non trivial cases that has been studied by several
authors. In any investigation about the coefficients of cyclotomic polynomials we can reduce our enquiry
to the case when n is odd, square-free and composite. Hence we can state the following observations,

(i) Form earlier proven lemmas we have

an(i) =

{
an(i

N
n
) if n

N
| i

0 Otherwise.

(ii) For odd n > 1, we have a2n(i) = (−1)ian(i)

(iii) When, n = p, a prime number we have Φp(x) = xp−1 + xp−2 + ... + 1. Hence, ap(i) = 1 for all
prime i = 0, 1, 2, ..., p− 1.

Now we give an explicit formula for binary cyclotomic polynomial due to Lam and Leung [3].

Theorem 11. Let s, r be non negative integers such that (p− 1)(q − 1) = rp+ sq. Then,

Φpq(x) =

(
r∑

i=0

xip

)(
s∑

j=0

xjq

)
−

(
q−1∑

i=r+1

xip

)(
p−1∑

j=s+1

xjq

)
x−pq

Moreover for any 0 ≤ k ≤ (p− 1)(q − 1) we have,

(i) apq(k) = 1 if and only if k = ip+ jq for some i ∈ [0, r], j ∈ [0, s].

(ii) apq(k) = −1 if and only if k + pq = ip+ jq for some i ∈ [r + 1, q − 1], j ∈ [s+ 1, p− 1].

(iii) apq(k) = 0 is zero otherwise.

Proof. Let, ζ = e
2iπ
pq be a primitive pqth root of unity. Hence we can say that ζp = e

2iπ
q and ζq = e

2iπ
p i.e.

ζp is a qth root of unity and ζq is a pth root of unity.

Now, consider two polynomials Φp(x) and Φq(x) for some primes p, q. These polynomials are of degrees
(p− 1) and (q − 1) respectively. So, we can write,
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Φp(ζ
q) = 0 =⇒

q−1∑
i=0

(ζp)i = 0 =⇒
r∑

i=0

(ζp)i = −
q−1∑

i=r+1

(ζp)i

and,

Φq(ζ
p) = 0 =⇒

p−1∑
j=0

(ζq)j = 0 =⇒
s∑

j=0

(ζq)j = −
p−1∑

j=s+1

(ζq)j

Now, multiplying the above two equations,

(
r∑

i=0

(ζp)i
)(

s∑
j=0

(ζq)j
)

−

(
q−1∑

i=r+1

(ζp)i
)(

p−1∑
j=s+1

(ζq)j
)

= 0

Now, we can check that, ζ is the root of the following polynomial,

f(x) :=

(
r∑

i=0

xpi

)(
s∑

j=0

xqj

)
−

(
q−1∑

i=r+1

xpi

)(
p−1∑

j=s+1

xqj

)
x−pq

Clearly, the first product of the above equation has highest degree pr + sq and we know that pr + sq =
(p− 1)(q − 1). The second product of the above equation has highest degree (q − 1)p+ (p− 1)q − pq =
(p−1)(q−1)−1 and lowest degree (r+1)p+(s+1)q−pq = rp+sq+p+q+pq = (p−1)(q−1)+p+q−pq =
pq − p − q + 1 + p + q − pq = 1. Hence, both products of the above are monic polynomials and thus
f(x) ∈ Z[x] is a monic polynomial of degree (p− 1)(q − 1) = ϕ(pq).

Moreover, we know that f(ζ) = 0. If ζ ′ be another root of unity, then also we have f(ζ ′) = 0. Since, f(x)
is monic polynomial of degree ϕ(pq) with f(e2iπm/pq) = 0 for all integers m such that g.c.d(m, pq) = 1.
So, we must have f(x) = Φpq(x).

Now note that, if i, i′ ∈ [0, q−1] and j, j′ ∈ [0, p−1] such that ip+jq = i′p+j′q or ip+jq = i′p+j′q−pq,
then

q | (i− i′) and p | (j − j′) =⇒ i = i′ and j = j′

.

If we expand the products of the above polynomial equation, then the rest of the assertions follows easily.

Remark 4. The above theorem together with the properties that we have proved earlier, proves that the
coefficients of the first 104 polynomials are {−1, 0,+1}.

Higher degree cyclotomic polynomials are quite tough to follow general formulas for coefficients and there
is no significant development in this topic till now. But, middle terms of cyclotomic polynomials plays a
crucial role. Instead of looking over all the coefficients, we can just focus the middle term of a polynomial
to get some useful informations. So, middle terms are interesting and studied by several authors. We now
present a short proof of the middle terms of binary cyclotomic polynomials that follows directly from the
above theorem.
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Corollary 2. Assume that q > p and let l = (p−1)(q−1)
2

. Then the middle coefficient apq(l) of Φpq(x) is
(−1)r

Proof. See p.315 of [4]

Theorem 12. Z = {an(k) | k, n ∈ N}

Proof. Let’s prove that if t is any integer greater than 2, then there exist t distinct primes p1 < p2 < ... < pt
such that p1 + p2 > pt.

Assume the contrary, that is, there exists an integer t > 2 for which our claim is false. For this t, given any
t distinct primes p1 < p2 < ... < pt we have p1+ p2 ≤ pt. This implies 2p1 < pt. Therefore, for any given
integer k, the number of primes between 2k−1 and 2k is always less than t. This is because if we have t
distinct primes between 2k−1 and 2k, then we have p1 > 2k−1 =⇒ 2p1 > 2k > pt which is not true by
our assumption. Hence the number of primes less than 2k is π(2k) < kt which is false by prime number
theorem, since π(x) > x

log x
for all x ≥ 17. Thus the claim is true.

Now we shall prove the theorem. Let t be any odd positive integer greater than 2. From the above claim,
we can find t distinct primes p1 < p2 < ... < pt such that p1+p2 > pt. Let p = pt and n = p1.p2...pt. Now
consider Φn(x). We have Φn(x) =

∏
d|n
(
xd − 1

)µ(n/d). We go modulo xp+1 and since n is square-free
integer, because of the conditions on these set of primes, whenever d ̸= pi, 1 for all i = 1, 2, ..., t we have

Φn(x) =
∏
d|n

(
xd − 1

)µ(n
d
)

≡
t∏

i=1

xpi − 1

x− 1
(mod xp+1)

≡ 1− xp

1− x
(1− xp1)...(1− xpt−1) (mod xp+1)

≡ (1 + x+ ...+ xp−1)(1− x− ...− xpt−1) (mod xp+1)

This yields that, an(p) = −t+ 1 and an(p− 2) = −t+ 2. Hence, if we let

S := {an(m) | ∀n,m ∈ N}

then S contains {l ∈ Z | l ≤ −1} as t varies over all the odd integer greater than or equal to 3. By the
above theorem, already we know {−1, 0,+1} ⊂ S. In order to prove that S contains all positive integers
greater than or equal to 2, consider Φ2n(x) where n = p1.p2...pt. From the observations stated earlier, we
have a2n(p) = (−1)pan(p) = t− 1 and a2n(p− 2) = (−1)p−2an(p− 2) = t− 2. Hence by varying t over
all the odd integers ≥ 3, we see that S contains all the positive integers greater than or equal to 1.

If n is a product of more than two distinct primes, then the explicit values of the coefficients are not known
in general. Ternary cyclotomic polynomials are the simplest one for which the behaviour of the coefficients
is not fully understood but some good amount of progress has been made in the last two decades. We now
give a following significant lemma due to kaplan [5] which has been used to prove several results on
ternary cyclotomic polynomials.
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Lemma 7. Let f(m) be the unique value 0 ≤ f(m) < pq such that,

f(m) ≡ r−1(n−m) ( mod pq)

We have,

Cn =

p−1∑
m=0

a′f(m) −
a+p−1∑
m=q

a′f(m)

Proof. We first use the result stated earlier, in Theorem 6, to factor

Φpqr(x) =
Φpq(x

r)

Φpq(x)
=

Φpq(x
r)Φ1(x)Φp(x)Φq(x)

xpq − 1

We can write 1
xpq−1

in terms of it’s power series expansion.

1

xpq − 1
= −(1 + xpq + x2pq + ...)

Therefore,

Φpqr(x) = (1 + xpq + ...)(1 + x+ ...+ xp−1 − xq − xq+1 − ...− xq+p−1)Φpq(x
r)

Let,

g(x) = (1− xpq)Φpqr(x) = (1 + x+ ...+ xp−1 − xq − xq+1 − ...− xq+p−1)Φpq(x
r)

We will determine the terms of g(x) that have exponent congruent to n ( mod pq). Now, let

χm =


1 if m ∈ [0, p− 1]

−1 if m ∈ [q, q + p− 1]

0 Otherwise.

We call that, f(m) ≡ r−1(n − m) ( mod pq). Therefore, χmx
maf(m)x

rf(m) is a term of g(x) with
exponent congruent to n( mod pq). We note that the degree of Φpq = (p − 1)(q − 1). As we range m
over [0, pq − 1], we find all the terms of g(x) with exponent congruent to n ( mod pq).

We can now write the expression for the coefficients of Φpqr(x). To compute cn we only want to sum
terms with exponents at most n. Since, m < pq and rf(m) ≡ n −m( mod pq), we have rf(m) ≤ n if
and only if m+ rf(m) ≤ n. Therefore,

Cn =
∑
m≥0

χma
′
f(m) =

p−1∑
m=0

a′f(m) −
a+p−1∑
m=q

a′f(m)
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The above lemma is sometimes referred as kaplan’s lemma and it is very useful in the study of ternary
cyclotomic polynomials. It basically reduces the the computation of apqr(j) to that of apq(j) and the
coefficients of binary cyclotomic polynomials is quite easy to understand. We will use this lemma to study
flat ternary cyclotomic polyomials in later sections. We can extend the study of cyclotomic polyomials for
higher degree too. But there are very few works has been done on cyclotomic polynomials of order greater
than 3. It is hard to give a general formula. Several authors has done some specific works on higher order
using so much restrictions. One can follow these [6][7] to have an idea of some recent developments of
the subject. We now explore some more properties of these polynomials.

3.2 Height
In general, the highest absolute value of the coefficients of a polynomial is called the height of that
polynomial and is denoted by A(n), n ∈ N is the degree of the polynomial. Several authors have studied
the height of cyclotomic poynomials. Schur was the first to prove that the coefficients of cyclotomic
polynomials can be arbitrarily large i.e. supn≥1A(n) = +∞. There’s a significant generalization by
Erdös which is as follows:

A(n) > exp
(
C(log n)

4
3

)
For infinitely many positive integers n and for some constant C > 0. His proof rests on a lower bound
for the maximum of | Φn(x) | on the unit circle, and the simple consideration that | Φn(x) |≤ nA(n) for
every z ∈ C with | z |≤ 1. This is essentially the main technique that has been used to prove the lower
bounds for A(n) by several authors.

There are several interesting open questions concerning cyclotomic polynomials of order three. We assume
that p < q < r. Bang proved the bound

A(pqr) ≤ (p− 1)

This was improved by Beither, who proved that

A(pqr) < p−
⌊p
4

⌋
and made the following conjecture,

Conjecture 1. (Beiter, 1968)

A(pqr) ≤ p+ 1

2

Leher found a counter example to Beiter’s Conjecture, that is, A(17.29.41) = 10 > (17+1)
2

. Let, M(p) :=
max
p<q<r

A(p) for every odd prime p. Gallot & Moore defined an effectively computable set of natural num-

bers for which Beiter’s Conjecture is false. So, they formulated the following,

Conjecture 2. (Corrected Beiter’s, 2008)

M(p) ≤ 2

3
p for every prime p
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More recently Kosyak, Moore, Sofos & Zhang conjectured that every positive integer is of the form A(n),
for some ternary integer n. They proved this conjecture under a stronger form of Andrica’s Conjecture on
prime gaps, that is, assuming that,

pn+1 − pn <
√
pn + 1

holds for every n ≥ 31, where pn denotes the nth prime number. A nice survey regarding these connections
between cyclotomic polynomials & prime gaps is given by Moore.

3.3 Flatness

Instead of studying upper bounds ofA(n) for different n, we can give conditions on the prime factorization
of n. In that case A(n) is small and relatively easy to study. Recall the definition of flat cyclotomic
polynomials given earlier, basically the polynomials with A(n) = 1 are called flat. Several families of
flat cyclotomic polynomials have been constructed for binary and ternary cyclotomic polynomials but a
complete classification of ternary cases is not known till now. Even there are not enough works have
been done for higher order cyclotomic polynomials. These polynomials are very uncertain and there is no
general formula to study their nature. All works has been done after implementing so many restrictions.
Here, We now talk about flat ternary cyclotomic polynomials. Bachman [8] proved that for any prime
p ≥ 5, there are infinitely many pairs of primes (q, r) such that A(pqr) = 1. Bachman’s theorem’s
requires that q ≡ −1 (mod p). But Kaplan [5] proved that for any pair of primes (p, q) there exists
infinitely many primes r such that Φpqr(x) is flat using his own lemma. This theorem is very useful for
study the behaviour of flat ternary cyclotomicc polynomials and has been used by several authors in further
development of the subject. We present this significant proof. Before that we state a proposition which
can be easily derived from the Theorem 11.

Proposition 2. The nonzero coefficients of Φpq(x) alternate between +1 and −1.

Theorem 13. Let p < q be primes. Let r ≡ 1( mod pq) be prime. Then Φpqr(x) is flat.

Proof. Assume, r ≡ 1( mod pq). So, r−1 ≡ 1( mod pq). We have to show that any coefficient cn of
Φpqr(x) has absolute value at most 1. Given n, let f(i) be the unique value 0 ≤ f(i) ≤ pq such that
f(i) ≡ n− i( mod pq). So, we conclude from Kaplan’s lemma that ,

cn =

p−1∑
i=0

a′f(i) −
q+p−1∑
j=q

a′f(j)

Let S be the first sum of the expression and T be the second sum of the expression. From Kaplan’s lemma
we write,

g(x) = (1− xpq)Φpqr(x) = (1 + x+ ...+ xp−1 − xq − xq+1 − ...− xq+p−1)Φpq(x
r)

The degree of g(x) is r(p− 1)(q− 1)+ q+ p− 1 = (r− 1)(p− 1)(q− 1)+ pq. For n > deg(Φpqr(x)) =
(p− 1)(q− 1)(r− 1), we have cn = 0. Since, ai ̸= 0 implies i ≤ (p− 1)(q− 1), for n ≥ r(p− 1)(q− 1),
we have af(i) = af(i) for all i. These facts together imply that,
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p−1∑
i=0

af(i) =

p+q−1∑
j=q

af(j)

Though we assume that n ≥ r(p− 1)(q − 1) to establish the equality. It is clear that it holds for all n.

By above proposition, for any values α and β we have,

∣∣∣∣∣
β∑

i=α

ai

∣∣∣∣∣ ≤ 1

We note that f(i+k) ≡ f(i)−k( mod pq) and that pq−(p−1)(q−1) = q+p−1. Let, j ≤ i ≤ j+p−1.
The values of f(i) that af(i) ̸= 0 lie in some interval [l, l + p− 1]. This is because if (p − 1)(q − 1) <
f(i) < pq, then af(i) = 0 . This implies that both S and T have absolute value 1.

If T = 0, then it is clear that | cn |≤ 1. So, suppose that T = 1, with the case T = −1 following similarly.

We consider two cases. First suppose that there exists k such that q ≤ k ≤ q + p − 1, af(k) ̸= 0, and
rf(k) > n, so that a′f(k) = 0. We show that in this case S = 0 and hence cn = 1

Now, observe that f(k) ≤ (p − 1)(q − 1) and that it is not possible to have both f(k) = (p − 1)(q − 1)
and k = p + q − 1. Indeed in the latter case f(j) ≥ f(k) for all q ≤ j ≤ q + p − 1. So that a′f(j) = 0,
contradicting the assumption T = 1. It follows that k also satisfies k + f(k) < pq. Therefore, for
0 ≤ i ≤ p − 1, f(i) > f(k), so that a′f(i) = 0 and S = 0. Now, assume that for all q ≤ k ≤ q + p − 1,
a′f(k) = af(k).

So,

T =

j=p+q−1∑
j=q

af(j) = 1

Since,
∑p−1

i=0 af(i) = T = 1 and the nonzero coefficients of each sum alternate between 1 −1, the nonzero
term giving the minimum value of f(j) and the nonzero term giving the maximum value of f(j) must
both be 1. Therefore, for each n, S = 1 or S = 0. Thus, | cn |≤ 1.
For the case r ≡ −1( mod pq) we apply kaplan’s lemma again. In this case r−1 ≡ −1( mod pq). So,
we define f(i) to be unique value 0 ≤ f(i) < pq such that f(i) ≡ −(n − i)( mod pq). The rest of the
argument is the same.

Remark 5. Note that this theorem does not include all flat cyclotomic polynomials Φpqr(x). For example,
A(3.7.11) = 1
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Appendix A

Cyclotomic Field

Cyclotomic polynomials are irreducible over Q. We can extend Q to a field Q(ζn) by adjoining nth root
of unity. The extended field is called cyclotomic field. Cyclotomic fields played a crucial role in the
development of modern algebra and number theory because of their relation with Fermat’s Last Theorem.
The nth cyclotomic field is the extension Q(ζn) of Q generated by ζn. We can show that the extension
Q(ζn) is a Galios extension [9] over Q of order φ(n) where φ(n) denotes the Euler φ-function and the
respective Galios group is isomorphic with the multiplicative group (Z/nZ)× (see p.577 of [9]) and there’s
a standard result that a cyclotomic field is an Abelian extension of Q [9]. Galios groups are particularly
fascinating because of it’s connections with different branches of Mathematics. In fact it’s an open problem
to determine which groups arise as the Galios groups of Galios extensions of Q. There’s a stronger result
on the connection between any finite Abelian group and cyclotomic fields which can be stated as follows,

Theorem 14. Let G be a finite Abelian group. Then there is a subfield K of a cyclotomic field with
Gal(K/Q) ∼= G

Proof. See p.580-581 of [9]

So, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q,
having Galois group of the form (Z/nZ)×. There is a partial converse statement of this result which can
be stated as follows,

Theorem 15. (Kronecker-Weber) Let K be a finite abelian extension of Q. Then K is contained in a
cyclotomic extension of Q.

Proof. See [10]

In other words, every algebraic integer whose Galois group is abelian can be expressed as a sum of roots
of unity with rational coefficients. The proof requires the concept of class field theory.
There are generalizations of the above theorem known as local and global versions of Kronecker-Weber
theorem.There’s a more generalized analogue known as Hilbert’s twelfth problem that addresses the situ-
ation of a more general algebraic number field K: what are the algebraic numbers necessary to construct
all abelian extensions of K? It’s an open problem till date and many developments have been done. A
recent separate development was Stark’s conjecture, which in contrast dealt directly with the question of
finding interesting, particular units in number fields. This has seen a large conjectural development for
L-functions, and is also capable of producing concrete, numerical results.
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Appendix B

Some open problems

We give here some open questions on cyclotomic polynomials stated by by several authors in their papers.

• (Conjectured by Kaplan [2010]): If A(n) > 1 then for any prime p, show that A(pn) > 1.

• Are there any flat cyclotomic polynomials of order ≥ 5?

• (Conjectured by pomerance and Rubinstein-Salzedo [2019]):

(i) Let,

S = {α ∈ R : Φm(α) = Φn(α) for some m,n ∈ Z+ and m ̸= n}

Then, the largest limit point of S is 2.

(ii) For any distinct positive integers m and n, if z ∈ C\R and Φm(z) = Φn(z) then,

1√
2
≤ | z | ≤

√
2

The upper bound is attained only for {m,n} = {1, 3}, {1, 4}, {1, 5}

• (A special case of Bunyakovsky Conjecture): If n is a fixed positive integer, then Φn(m) is prime for
an infinite number of integer inputs m.

• Is there any sufficiently large number k ∈ N for which any cyclotomic polynomial of degree ≥ k is
not flat ?
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