Solutions to Dummit and Foote's Abstract Algebra

Written by James Ha

Contents

0	Preliminaries		1
	0.1	Basics	1
	0.2	Properties of the Integers	3
	0.3	$\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo n	5

Chapter 0

Preliminaries

0.1 Basics

1. It is less of a pain to figure out the form of all matrices in \mathcal{B} than to multiply all of these matrices by *M*. Such matrices *X* satisfy

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} p+r & q+s \\ r & s \end{pmatrix} = \begin{pmatrix} p & p+q \\ r & r+s \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

That is to say, r = 0 and p = s so the matrices *X* take the form

$$\begin{pmatrix} s & q \\ 0 & s \end{pmatrix}$$

So, of the matrices shown, the following are elements of \mathcal{B} :

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

2. If $P, Q \in \mathcal{B}$, then (P+Q)M = PM + QM = MP + MQ = M(P+Q). Therefore, $P + Q \in \mathcal{B}$.

3. If $P, Q \in \mathcal{B}$, then PQM = PMQ = MPQ. Therefore, $PQ \in \mathcal{B}$.

4. See the solution to problem 1 above.

5. (a) This function is not well-defined. For example, $\frac{1}{2}$ may be written $\frac{2}{4}$, $\frac{3}{6}$, etc. So it is ambiguous what the value of f(1/2) should be.

5. (b) This function is well defined, since if a/b = c/d then we have $a^2/b^2 = c^2/d^2$.

6. Although the decimal expansion of many real numbers is unique, there are some real numbers that have two different decimal expansions (e.g., $0.4\overline{9} = 0.5$). Therefore, this function is not well defined.

7. This relation is clearly reflexive since $f(a) = f(a) \ \forall a \in A$. It is symmetric because if $a \sim b$ then f(a) = f(b), which means f(b) = f(a) and therefore, $b \sim a$. Finally, if $a \sim b$ and $b \sim c$, then f(a) = f(b) and f(b) = f(c). This means that f(a) = f(c) and therefore, $a \sim c$. Thus, the relation is transitive as well, and is an equivalence relation. The equivalence classes are sets of elements in *A* that map to the same element in *B*, which are exactly the fibers of *f*.

0.2 **Properties of the Integers**

1. (a) Since 13 is prime, their greatest common divisor is 1. Their least common multiple is 260. We may write $2 \cdot 20 - 3 \cdot 13 = 1$

1. (b) Their greatest common divisor is 3. Their least common multiple is 8556. We may write $18 \cdot 372 - 97 \cdot 69 = 3$

1. (c) Their greatest common divisor is 11. Their least common multiple is 19800. We may write $8 \cdot 792 - 23 \cdot 275 = 11$.

1. (d) Their greatest common divisor is 3. Their least common multiple is 21540381. We may write $34426 \cdot 5673 - 17145 \cdot 11391 = 3$.

1. (e) Their greatest common divisor is 1. Their least common multiple is 2759487. We may write $140037984 \cdot 1761 - 157375169 \cdot 1567 = 1$.

1. (f) Their greatest common divisor is 691. Their least common multiple is 44693880. We may write $1479 \cdot 507885 - 12353 \cdot 60808 = 691$.

2. If k|a and k|b, then there exist $c, d \in \mathbb{Z}$ such that a = kc and b = kd. Then for any integers s, t, we have as + bt = kcs + kdt = k(cs + dt). Since $cs + dt \in \mathbb{Z}$, k|as + bt.

3. If *n* is composite, then there are two integers *a*, *b* such that 1 < |a| < n, 1 < |b| < n, and n = ab. Then $n \nmid a$ and $n \nmid b$, but $n \mid ab$.

4. Since d|b and d|a, clearly bt/d, $at/d \in \mathbb{Z}$ and so are x and y. Then we have

$$ax + by = a\left(x_0 + \frac{b}{d}t\right) + b\left(y_0 - \frac{a}{d}t\right) = ax_0 + by_0 = N$$

Therefore, for any $t \in \mathbb{Z}$, the given *x* and *y* are also solutions to ax + by = N.

5. $\phi(1) = 1$, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(5) = 4$, $\phi(6) = 2$, $\phi(7) = 6$, $\phi(8) = 4$, $\phi(9) = 6$, $\phi(10) = 4$, $\phi(11) = 10$, $\phi(12) = 4$, $\phi(13) = 12$, $\phi(14) = 6$, $\phi(15) = 8$, $\phi(16) = 8$, $\phi(17) = 16$, $\phi(18) = 6$, $\phi(19) = 18$, $\phi(20) = 8$, $\phi(21) = 12$, $\phi(22) = 10$, $\phi(23) = 22$, $\phi(24) = 8$, $\phi(25) = 20$, $\phi(26) = 12$, $\phi(27) = 18$, $\phi(28) = 12$, $\phi(29) = 28$, $\phi(30) = 8$.

6. Assume that there exists a non-empty subset *A* that has no least element. Then $1 \notin A$ or 1 would be the least element of *A*. Suppose that all positive integers less than or equal to *n* are in $\mathbb{Z}^+ \setminus A$. Then n + 1 cannot be in *A* either or it would be the least element of *A*. By induction on *n*, no positive integer is in *A* and therefore, $A = \emptyset$. This is a contradiction so every non-empty subset of \mathbb{Z}^+ has a least element.

7. Let *p* be a prime, and suppose there exist nonzero integers *a*, *b* such that $a^2 = pb^2$. Assume without loss of generality that (a, b) = 1. Note that if $p|a^2$ then p|a. Therefore, $\exists c \in \mathbb{Z} \setminus \{0\}$ such that a = pc and $a^2 = pb^2 = p^2c^2$. This, however, implies that p|(a, b), which is a contradiction. Therefore, no such integers *a*, *b* exist.

8. The number of integers $\leq n$ that are divisible by p is given by $\lfloor \frac{n}{p} \rfloor$. Similarly, the number of integers $\leq n$ that are divisible by p^k is given by $\lfloor \frac{n}{p^k} \rfloor$. These expressions count only a single factor of p from each of these integers. So the expression for the largest power ℓ of p that divides n! is

$$\ell = \sum_{k} \left\lfloor \frac{n}{p^k} \right\rfloor$$

9. This is trivial and left as an exercise for the reader.

10. Fix *N*, and note that for any integer *n* such that $\phi(n) = N$, all of its prime factors must be less than or equal to N + 1. This must be true, since for any prime p > N + 1, $\phi(p) > N$, and if *p* is a prime factor of *n*, then $\phi(p)|N$, which is clearly absurd. Let p_1, p_2, \ldots, p_t be the primes less than or equal to N + 1. All numbers *n* such that $\phi(n) = N$ therefore have a unique prime factorization $n = p_1^{s_1} p_2^{s_2} \ldots p_t^{s_t}$. For $1 \le i \le t$, then, $p_i^{s_i-1}|N$. Let k_i be the largest integer such that $p_i^{k_i}|N$. We require $s_i \le k_i + 1$ and thus, there are at most $\prod_i (k_i + 1)$ integers *n* such that $\phi(n) = N$. Since the fiber of ϕ over each positive integer is of finite order, ϕ must tend to infinity as *n* tends to infinity.

11. Let $n = p_1^{s_1} p_2^{s_2} \dots p_t^{s_t}$. Then $\phi(n) = p_1^{s_1-1} p_2^{s_2-1} \dots p_t^{s_t-1} \phi(p_1 \dots p_t)$. If d|n, then we may write $d = p_1^{r_1} p_2^{r_2} \dots p_t^{r_t}$ and $\phi(d) = p_1^{r_1-1} p_2^{r_2-1} \dots p_t^{r_t-1} \phi(\prod_{i:r_i \neq 0} p_i)$, where $0 \le r_i \le s_i$ for all *i*. It is obvious that $\phi(d) | \phi(n)$, hence the claim.

0.3 $\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo *n*

1. The equivalence classes are $\overline{a} = \{a + 18k | k \in \mathbb{Z}\}$ where a = 0, 1, ..., 17.

2. For fixed integer *n*, all integers *a* may be written in the form a = qn + r, where $0 \le r < |n|$ and $r, q \in \mathbb{Z}$. That is to say, a - r = qn and therefore n|a - r. We can then say that *a* is in the residue class of *r*. The possible values of *r* are exactly 0, 1, ..., n - 1. So the distinct equivalence classes are exactly $\overline{0}, \overline{1}, ..., \overline{n - 1}$.

These equivalence classes are truly distinct. If an integer *a* is in the equivalence class of both *b* and *c*, where $b \neq c$ and $0 \leq b, c < |n|$, then $a - b = q_b n$ and $a - c = q_c n$. It follows that $b - c = (q_c - q_b)n$. However, |b - c| < |n| so this can only be true if b - c = 0, which is a contradiction.

3. Since $10 \equiv 1 \pmod{9}$, we have that $10^n \equiv 1 \pmod{9}$. Then $a_n 10^n \equiv a_n \pmod{9}$, and $a \equiv a_n + a_{n-1} + ... + a_0 \pmod{9}$.

4. First, note that $37 \equiv 8 \pmod{29}$ and that $8^{28} \equiv 1 \pmod{29}$. Then $37^{100} = 37^{3 \cdot 28 + 16} \equiv 8^{16} \equiv 23 \pmod{29}$. The remainder is 23.

5. The last two digits are the remainder when 9^{1500} is divided by 100. Note that $9^{10} \equiv 1 \pmod{100}$. Therefore, the last two digits are 01.

6.
$$\overline{0}^2 = \overline{0^2} = \overline{0}, \overline{1}^2 = \overline{1^2} = \overline{1}, \overline{2}^2 = \overline{2^2} = \overline{4} = \overline{0}, \text{ and } \overline{3}^2 = \overline{3^2} = \overline{9} = \overline{1}$$

7. From the previous exercise, we know that $\overline{a^2}$, $\overline{b^2}$ are either $\overline{0}$ or $\overline{1}$. Thus, $\overline{a^2 + b^2}$ must be $\overline{0}$, $\overline{1}$, or $\overline{2}$.

8. Consider the equation mod 4, and suppose that there exists non-zero integers a_0 , b_0 , and c_0 such that $a_0^2 + b_0^2 = 3c_0^2$. From the previous two exercises, we know that $3c_0^2$ must be equal to either $\overline{0}$ or $\overline{3}$. However, since it is impossible for $\overline{a_0^2 + b_0^2}$ to be equal to $\overline{3}$, we find that both are equal to $\overline{0}$. Then we may write $a_0 = 2a_1$, $b_0 = 2b_1$, and $c_0 = 2c_1$, where $a_1, b_1, c_1 \in \mathbb{Z}$. It is clear that a_1, b_1 , and c_1 are also solutions to the equation and that we can repeat this process infinitely many times to obtain an infinite number of solutions between 0 and a_0, b_0, c_0 . This is absurd, hence there are no non-zero integer solutions to $a^2 + b^2 = 3c^2$.

9. Any odd integer may be written in the form 2k + 1, where $k \in \mathbb{Z}$. The square of an odd integer is therefore $(2k + 1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1$. Note that if k is not even, then k + 1 must be so that for all $k \in \mathbb{Z}$, $(2k + 1)^2 = 8q + 1$, for some integer q.

10. Proposition 4 states that $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} | (a, n) = 1\}$. From the first exercise, we know that the residue classes of $\mathbb{Z}/n\mathbb{Z}$ are $\overline{0}, \overline{1}, ..., \overline{n-1}$. Furthermore, we know that the number of integers *a* such that $a \leq n$ and (a, n) = 1 is $\phi(n)$. Therefore, there are $\phi(n)$ elements of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

11. If $\overline{a}, \overline{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then there exist $\overline{a^{-1}}, \overline{b^{-1}} \in \mathbb{Z}/n\mathbb{Z}$ such that $\overline{a^{-1}} \cdot \overline{a} = \overline{1}$ and $\overline{b^{-1}} \cdot \overline{b} = \overline{1}$. Observe that $\overline{b^{-1}} \cdot \overline{a^{-1}} \cdot \overline{a} \cdot \overline{b} = \overline{1}$ and that $\overline{a} \cdot \overline{b}, \overline{b^{-1}} \cdot \overline{a^{-1}} \in \mathbb{Z}/n\mathbb{Z}$. It follows that $\overline{a} \cdot \overline{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$

12. Let $a, n \in \mathbb{Z}$ such that n > 1 and $1 \le a \le n$. Suppose that (a, n) = d, d > 1. We may then write n = bd and a = cd, where $b, c \in \mathbb{Z}$. Then $ab = cdb = cn \equiv 0 \pmod{n}$.

Now suppose that there exists $e \in \mathbb{Z}$ such that $ae \equiv 1 \pmod{n}$. Then ae = qn + 1 for some $q \in \mathbb{Z}$. Remembering that n = bd and a = cd, we have cde - qbd = d(ce - qb) = 1. However d > 1 so $d \nmid 1$, which is a contradiction. Therefore, no such integer *e* exists.

13. Let $a, n \in \mathbb{Z}$ such that n > 1 and $1 \le a \le n$. Suppose that (a, n) = 1. Then there exist $b, c \in \mathbb{Z}$ such that ac + nb = 1 or ac = -bn + 1. Clearly, $ac \equiv 1 \pmod{n}$.

14. In the previous two exercises, we found that for \overline{a} , there exists \overline{c} such that $\overline{a} \cdot \overline{c} = \overline{1}$ iff *a* and *n* are relatively prime. Therefore, $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \text{there exists } c \in \mathbb{Z}/n\mathbb{Z} \text{ with } \overline{a} \cdot \overline{c} = \overline{1}\} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a, n) = 1\}.$

15. (a) 13 is prime and 20 is not a multiple of 13 so they are relatively prime. The multiplicative inverse of $\overline{13}$ is $\overline{17}$.

15. (b) 89 is prime so 69 and 89 are relatively prime. The multiplicative inverse of $\overline{69}$ is $\overline{40}$.

15. (c) 3797 is prime so 1891 and 3797 are relatively prime. The multiplicative inverse of $\overline{1891}$ is $\overline{253}$.

15. (d) 77695236973 is prime so 77695236973 and 6003722857 are relatively prime. The multiplicative inverse of 6003722857 is 77695236753.

16. This is trivial and is left as an exercise to the reader.