

Título do Projeto

Nome completo do Aluno

Trabalho realizado sob a orientação de:

Professor Doutor Nome do Orientador Engenheiro Nome do Co-Orientador

Título do Projeto

Relatório da Unidade Curricular de Projeto Licenciatura em Engenharia Eletrotécnica e de Computadores Escola Superior de Tecnologia e Gestão de Bragança

Nome completo do Aluno

Dedicatória

(Facultativo) Dedico este trabalho a \dots

Agradecimentos

(Facultativo) Agradeço este trabalho a \dots Resumo

O resumo (no máximo com 250 palavras), permite a avaliação do interesse de um documento

e facilita a sua identificação na pesquisa bibliográfica em bases de dados onde o documento se

encontre referenciado.

É recomendável que o resumo aborde, de forma sumária:

• Objetivos principais e tema ou motivações para o trabalho;

• Metodologia usada (quando necessário para a compreensão do relatório);

• Resultados, analisados de um ponto de vista global;

• Conclusões e consequências dos resultados, e ligação aos objetivos do trabalho.

Como este modelo de relatório se dirige a trabalhos cujo foco incide, maioritariamente,

no desenvolvimento de software, algumas destas componentes podem ser menos enfatizadas, e

acrescentada informação sobre análise, projeto e implementação do trabalho.

O resumo não deve conter referências bibliográficas.

Palavras-chave: termos (no máximo 4), que descrevem o trabalho.

V

Abstract

Direct translation (maximum of 250 words) to English of the section "Resumo".

Keywords: direct translation of "Palavras-chave"

Conteúdo

1	Introdução	1
2	Contexto e Tecnologias/Ferramentas	3
	2.1 Figuras	3
	2.2 Tabelas	4
	2.3 Equações	6
3	Abordagem/Análise/Modelação	7
4	Conclusão	9
\mathbf{A}	Projeto	۱.1

Lista de Tabelas

2.1	Tabela centralizada	4
2.2	Tabela com alinhamento à esquerda	5
2.3	Tabela usando $p\{\}$	5
2.4	Tabela usando o pacote booktabs	6

Lista de Figuras

2.1	Exemplo de uma figura	
2.2	Figuras apresentadas com o pacote $subfigure$	4
2.3	Exemplo de duas figuras, uma ao lado da outra	4

Lista de Algoritmos

A.1	Simples código em	C++				•											A	1.1
A.2	Simples código em	Matlab															Α	1.1

Acrónimos e Siglas

 \boldsymbol{AC} Corrente Alternada.

DC Corrente Contínua.
SI Sistema Internacional das Unidades.
AT Alta Tensão.
BT Baixa Tensão.
EEC Engenharia Eletrotécnica e de Computadores.
ESTiG Escola Superior de Tecnologia e Gestão.
IE Instalações Elétricas.
IPB Instituto Politécnico de Bragança.
ITED Infraestruturas de Telecomunicações em Edifícios.
MT Média Tensão.
UC Unidade Curricular.

Acrónimos e Siglas		

Nomenclatura

Símbolo	Descrição	SI
I'	Corrente para o Rendimento Máximo	A
I_N	Corrente Nominal	A
I	Corrente	A
P	Potência Ativa	W
Q	Potência Reativa	var
S	Potência Aparente	VA
U_c	Tensão Composta	V
U_s	Tensão Simples	V
Z	Impedância	$R + jX \Omega$
η	Rendimento	%
f	Frequência	$_{ m Hz}$

Capítulo 1.

Introdução

Este documento pretende guiar o Estudante na elaboração do relatório de Projeto/Estágio, do 3º ano da Escola Superior de Tecnologia e Gestão (ESTiG) do Instituto Politécnico de Bragança (IPB) a frequentar o curso de Engenharia Eletrotécnica e de Computadores (EEC).

O autor deverá ter em consideração as seguintes regras gerais na elaboração do documento:

- O documento deve ser redigido em português ou inglês com um estilo adequado e correto do ponto de vista gramatical (quer do ponto de vista sintático quer semântico);
- Ter especial cuidado com o uso de adjetivos (facilmente conduzem ao exagero), advérbios (nada, ou quase nada, acrescentam) e sinais de pontuação (em especial o uso correto das vírgulas);
- O estilo adotado para a redação deve ser coerente com as exigências de um trabalho científico encontrado em publicações impressas;
- De uma forma genérica deve usar a 3ª pessoa do singular (eventualmente do plural),
 exceção feita aos locais onde tal é claramente desajustado, por exemplo, na secção dos agradecimentos;
- Usar o estilo *itálico* sempre que são utilizados termos em línguas diferentes da língua adotada no relatório, para escrever símbolos matemáticos, por exemplo ω , ou ω ;
- O uso de acrónimos implica que na 1ª vez que são utilizados se apresentem por extenso, colocando entre parênteses a respetiva sigla que se passará a usar. Todos os acrónimos devem ser apresentados por ordem alfabética na secção "Lista de Acrónimos";
- O uso correto de unidades, seus múltiplos e submúltiplos ¹;

¹As unidades utilizadas ao longo do relatório deverá ser introduzida em **Nomenclatura**

- As imagens e tabelas devem, por princípio, aparecer no topo ou no fundo da página. A legendas das figuras surgem imediatamente após as figuras e no caso das tabelas as legendas antecedem as mesmas;
- Todas as figuras, tabelas e restantes listagens devem ser mencionadas no texto por forma a que fiquem enquadradas nas ideias transmitidas pelo autor. Esta referência, regra geral, deverá ser feita antes da ocorrência da figura, tabela ou listagem;
- Indicar ao longo do texto as referências documentais usadas, em especial nas citações (puras
 ou literais), assinaladas com a utilização de aspas, como também no caso de reutilização
 de gráficos, figuras, tabelas, fórmulas, etc., de outras fontes;

De uma forma já mais específica, neste primeiro capítulo obrigatório ("Introdução") o autor deve 2 :

- Contextualizar a proposta de trabalho no âmbito da empresa, de um outro trabalho já realizado, do ponto de vista científico e/ou tecnológico, etc.;
- Apresentar de forma clara os objetivos que se propõe atingir;
- Descrever de forma sucinta, mas objetiva, a solução preconizada ou a hipótese colocada;
- Apresentar de forma resumida, mas clara, os desenvolvimentos efetuados;
- Identificar como foi validada e avaliada a solução encontrada;
- Descrever a organização do documento.

 $^{{\}bf ^2}$ Recomenda-se para cada item a utilização de uma secção

Capítulo 2.

Contexto e Tecnologias/Ferramentas

Nunca colocar uma section depois de um chapter por isso, aqui deve-se fazer um breve resumo do que se vai falar ao longo do capítulo (2 - 3 linhas), por exemplo.... Neste capítulo será abordado formas de incluir figuras, tabelas e equações.

2.1. Figuras

Nesta secção será abordado como poderá-se colocar um figura num documento Latex.

De acordo com [1], em *Latex* Básico que para incluir figuras é necessário o pacote *graphicx*, que já está introduzido no ficheiro " package.text". Posto isto, ao longo do capítulo é importante referir o significado da figura, como por exemplo "Na Figura **2.1** será ilustrado um exemplo de uma figura". Em segundo a legenda de uma figura fica sempre depois da figura.

Figura 2.1: Exemplo de uma figura.

Por vezes é necessário colocar 2 figuras simumltaneamente como será ilustrada na figura 2.2

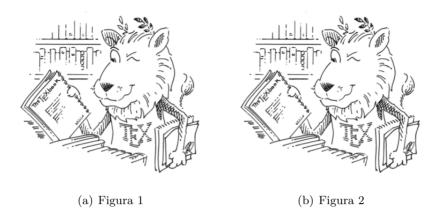


Figura 2.2: Figuras apresentadas com o pacote subfigure.

Na Figura **2.2** cada sub-figura têm uma sub-legenda, na Figura **2.3** será ilustrado duas Figura com apenas uma legenda.

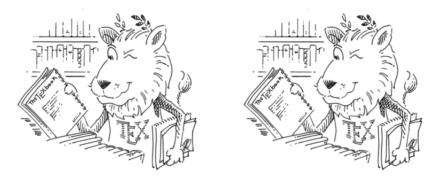


Figura 2.3: Exemplo de duas figuras, uma ao lado da outra.

2.2. Tabelas

Nesta secção será abordado como poderá-se colocar um tabela num documento Latex.

Segundo [3], uma tabela é definida entre os comandos \begin{tabular} e \end{tabular}, já seguir será ilustrado um exemplo.

Tabela 2.1: Tabela centralizada.

Coluna	Coluna	Coluna
a	b	\mathbf{c}
d	e	f

Após \begin{tabular} é colocado, entre {}, ccc, o que indica que a tabela terá 3 colunas,

todas centralizadas. O número de letras indica o número de colunas e a letra o seu alinhamento:

- c para colunas com texto alinhado centralizado;
- l para colunas com texto alinhado à esquerda;
- r para colunas com texto alinhado à direita.

Para indicar uma separação de coluna use-se &. Para indicar o número linhas usa-se duas barras juntas, \\, o que significa quebra de linha. O comando \hline \(\epsilon \) responsável por colocar uma linha horizontal na tabela e o comando \cline{-} faz uma linha horizontal somente entre as colunas indicadas. Para inserir linhas verticais usa-se | entre as letras que indicam o alinhamento da coluna.

Tabela 2.2: Tabela com alinhamento à esquerda.

Coluna	Coluna	Coluna
A	В	C
D	E	F

Se uma coluna receber um texto longo e seja necessário que haja uma quebra de linha dentro da célula, em vez de usar as letras c, l ou r usa-se p{}, onde dentro {} incluiu-se o tamanho da linha.

Tabela 2.3: Tabela usando $p\{\}$.

С	С	Coluna de Texto
A	В	Aqui será digitado um texto
		grande, mas a largura da cé-
		lula é fixa em 5 cm.

É possível tornar as tabelas mais bonitas, para isso é necessário usar \usepackage{booktabs}, ou seja este pacote retira o \hline e coloca:

- \toprule, para a linha superior da tabela;
- \midrule, para as linhas no meio da tabela;

• \bottomrule, para a linha abaixo da tabela.

Tabela 2.4: Tabela usando o pacote booktabs.

It		
Animal	Description	Price (\$)
Gnat	per gram	13.65
	each	0.01
Gnu	stuffed	92.50
Emu	stuffed	33.33
Armadillo	frozen	8.99

2.3. Equações

Em qualquer fórmula matemática existem constantes e variáveis, o *Latex* adota como convenção de trabalho, modificar a fonte e a apresentação dos elementos em função do seu tipo, constante ou variável, como por exemplo $p'' = max\{f(y), g(x)\}^{-1}$.

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Para mais informações [2, 4].

 $^{^{1}\}mathrm{Sempre}$ que iniciar uma equação é obrigatório ter legenda "Eq.2.1".

Capítulo 3.

Abordagem/Análise/Modelação

Neste capítulo espera-se uma descrição detalhada do problema e da proposta de solução.

Capítulo 4.

Conclusão

As conclusões devem sintetizar e proporcionar uma perspetiva unificadora ao trabalho efetuado. Poderá ser feita uma breve referência a trabalhos de outros com semelhanças ao efetuado e
ao conhecimento que resultou do trabalho efetuado, bem como sugestões de trabalho futuro. A
coerência do documento implica que as conclusões devem ser coerentes com as ideias expostas
na introdução.

Bibliografia

- [1] Overleaf. Inserting Images. https://pt.overleaf.com/learn/latex/Inserting_Images.
- [2] Overleaf. List of Greek letters and math symbols. https://www.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols.
- [3] Overleaf. Tables. https://pt.overleaf.com/learn/latex/Tables.
- [4] ufpel. Lista de Símbolos Matemáticos. https://wp.ufpel.edu.br/fernandosimoes/files/2012/06/Simbolos-matematicos.pdf.

Apêndice A.

Projeto

Algoritmo A.1: Simples código em C + +

```
#include <algorithm>
1
   #include <vector>
2
3
4
   int main()
5
   {
 6
        std::vector<int>nums;
       num.push_back(2);
       num.push_back(4);
8
9
       num.push_back(3);
10
       num.push_back(1);
       std::sort(nums.begin(), nums.end())
11
12
```

Algoritmo A.2: Simples código em Matlab

```
1 function f=exer2(t,z)
2
3 f=[z(2); -9.8+0.2*z(1)]
4
5 end
```