Curriculum Vitae Hannah Richards

Pronouns: she or they email@email.com (123) 456-7890

Education

August 2016— May 2020	 Degree: Bachelor of Science in Physics Where: University of Alabama, Tuscaloosa, AL GPA: 4.0 of 4.0 Summa cum laude Minors in Linguistics and Mathematics
Research February 2017— August 2019	Project: Signal–Background Discrimination in EXO–200 Where: University of Alabama, Tuscaloosa, AL Advisor: Igor Ostrovskiy Contributions:
	• I trained convolutional neural networks (CNNs) for recogniz- ing neutrinoless double beta decay signals against background events. I found that they had higher accuracy than conventional methods, such as binary decision trees, in my preliminary re- sults.
	• I administered two Linux GPU computing servers. My duties included managing user accounts, data, hardware, and software on these systems.
	• I worked on statistically interpreting an event-by-event classifier (e.g., a CNN) to calculate the sensitivity of the method and confidence intervals.
	• I gained experience working with photomultiplier tubes and dig- itizers for a muon detection project.
May 2019— July 2019	Project: Neutrino Physics REU Where: Duke University, Durham, NC Advisor: Kate Scholberg Contributions:
	• I searched for candidates for neutrino detector materials based on their charged-current interaction energy thresholds.
	• I found two isotopes, ¹⁸¹ Ta and ¹⁶⁰ Gd, that have desirable properties. I ran preliminary calculations for interaction cross sections and event rates, greenlighting further study.

May 2018— August 2018	Project: Experimental Nuclear Structure REU Where: Vanderbilt University, Nashville, TN Advisor: Joseph Hamilton Contributions:
	• Using double and triple coincidence counting, I measured the frequency at which ²⁵² Cf spontaneously fissions into certain isotopes. I performed these measurements for two separate element pairs: tellurium-palladium and strontium-neodymium.
	• I tabulated my results into yields matrices, finding that the most common number of neutrons evaporated during these decays was 3 or 4, with immeasurably small yields above 5 neutrons. This is evidence that a previously studied case, that of barium-molybdenum, is unique since it has an unusually high

Teaching

January 2017—	Position: Learning Assistant			
December 2019	Where:	Department of Physics and Astronomy,	University of Alabama	

I worked as an undergraduate teaching assistant in introductory physics courses from the spring of my freshman year until my senior year. I assisted with labs, proctored exams, and presented extra credit problems for the classes.

probability of evaporating between 7 and 10 neutrons.

Publications

- Brooks M. Musangu et al. "Anomalous neutron yields confirmed for Ba-Mo and newly observed for Ce-Zr from spontaneous fission of ²⁵²Cf". In: Phys. Rev. C 101 (3 Mar. 2020), p. 034610. DOI: 10.1103/PhysRevC.101.034610. URL: https://link.aps. org/doi/10.1103/PhysRevC.101.034610
- Sébastien Delaquis et al. "Deep neural networks for energy and position reconstruction in EXO-200". In: Journal of Instrumentation 13.08 (Aug. 2018), P08023. URL: http: //stacks.iop.org/1748-0221/13/i=08/a=P08023

Presentations

- T. H. Richards and Kate Scholberg. "Finding a Material with a Low Energy Threshold for Charged-Current Neutrino Interactions". In: 86th Annual Meeting of the Southeastern Section of the American Physical Society (SESAPS). Nov. 2019. URL: https://meetings.aps.org/Meeting/SES19/Session/D04.18
- T. H. Richards and Kate Scholberg. "Finding a Material with a Low Energy Threshold for Charged-Current Neutrino Interactions". In: 2019 Fall Meeting of the APS Division of Nuclear Physics. Oct. 2019. URL: http://meetings.aps.org/Meeting/ DNP19/Session/HA.117

- T. H. Richards. "Signal-Background Discrimination in EXO-200 with Deep Learning". In: APS April Meeting 2019. Vol. 64. 12. Apr. 2019. URL: https://meetings. aps.org/Meeting/APR19/Session/L10.8
- T. H. Richards et al. "Determining Yields of Fragment Pairs from the Spontaneous Fission of Californium-252". In: 5th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan. Vol. 63. 12. Oct. 2018. URL: http://meetings.aps.org/link/BAPS.2018.HAW.HA.74

Technical experience

Hardware PMTs, digitizers, breadboarding Software TensorFlow/Keras, Linux shell, Python, LATEX, C/C++, ROOT, Fortran Winner of UA's Large Hadron Collider Machine Learning Hackathon (2019)

Honors and awards

- Goldwater Scholarship (2019)
- Outstanding First Year Physics Student (2017)
- Computer–Based Honors Program Fellowship (2016)
- University of Alabama Presidential Scholarship (2016)