Submission 3

Alan Turing

Last update: 13.00 January 1, 2020

Contents

1 From Lecture Slides 1
2 Coding Exercises
3 Extra Practice

1 From Lecture Slides

P 3.1

(Bertrand's postulate) Prove that for every natural $n \leq 1$, there is a prime p such that $n \leq p \leq 2 n$.

Solution

I included a draft of my proof in figure 1.

Figure 1: My draft for P $\mathbf{3 . 1}$

```
import numpy as np
def incmatrix(genl1,genl2):
    m = len(genl1)
    n = len(genl2)
    M = None #to become the incidence matrix
    VT = np.zeros((n*m,1), int) #dummy variable
    #compute the bitwise xor matrix
    M1 = bitxormatrix(genl1)
    M2 = np.triu(bitxormatrix(genl2),1)
    for i in range(m-1):
        for j in range(i+1, m):
            [r,c] = np.where(M2 == M1[i,j])
            for k in range(len(r)):
            VT[(i)*n + r [k]] = 1;
            VT[(i)*n + c[k]] = 1;
            VT[(j)*n + r[k]] = 1;
            VT[(j)*n + c[k]] = 1;
            if M is None:
                    M = np.copy(VT)
            else:
                    M = np.concatenate((M, VT), 1)
            VT = np.zeros((n*m,1), int)
return M
```

Code 1: My pseudocode for C 3.1

2 Coding Exercises

C 3.1

Verify P 3.1 for $n \leq 50$.

Solution

The code for C 3.1 is included in my GitHub repository alan-turing/ai. An overview of my algorithm is provided in Code 1.

Notes

1. My work was based on the COTAI3 algorithm.
2. Only the cases where $n=1$ and $n=2$ were solved.

3 Extra Practice

E 3.1

Verify P 3.1 for $n \leq 50$.

Solution
Notes

