
SORTING ALGORITHMS

1. Bubble Sort

Approach - Bubble sort is based on the idea of repeatedly comparing pairs of adjacent elements and then swapping their
positions if they exist in the wrong order. This is the most time consuming sorting Algorithms as the time complexity
of the Bubble sort goes like this :

Worst Case - O(n2)

Average Case - O(n2)

Best Case - O(n)

Program -

void bubb l e so r t ( i n t ∗a , i n t n)
{

f o r ( i n t i =0; i<n ; i++)
{

f o r ( i n t j =0; j<n−i −1; i++)
{

i f ( a [ j ]>a [ j +1])
{

swap ( a [ i ] , a [ j ] ) ;
}

}
}

}

Plot -

2. Selection Sort

Approach - The Selection sort algorithm is based on the idea of finding the minimum or maximum element in an
unsorted array and then putting it in its correct position in a sorted array. Time complexity of the Bubble sort goes
like this :

Worst Case - O(n2)

Average Case - O(n2)

Best Case - O(n2)
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Program -

void s e l e c t i o n s o r t ( i n t ∗a , i n t n)
{

f o r ( i n t i =0; i<n−1; i++)
{

imin=i ;
f o r ( i n t j=i +1; j<n ; j++)
{

i f ( a [ j ]<a [ imin ] )
imin=j ;

}
swap ( a [ imin ] , a [ i ] )

}
}

Plot -

3. Insertion Sort

Approach - Insertion sort is based on the idea that one element from the input elements is consumed in each iteration to
find its correct position i.e, the position to which it belongs in a sorted array. Time complexity of the Bubble sort
goes like this :

Worst Case - O(n2)

Average Case - O(n2)

Best Case - O(n)

Program -

void i n s e r t i o n s o r t ( i n t ∗a , i n t n)
{

f o r ( i n t i =1; i<n ; i ++){
value = a [ i ] ;
ho l e =i ;
whi l e ( hole>0&&a [ hole−1]>value ){

a [ ho l e ] = a [ hole −1] ;
hole−−;}

a [ ho l e ] =value ;
}

}
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Plot -

4. Merge Sort

Approach - Merge sort is a divide-and-conquer algorithm based on the idea of breaking down a list into several sub-lists
until each sublist consists of a single element and merging those sublists in a manner that results into a sorted list.
Time complexity of the Bubble sort goes like this :

Worst Case - O(nlogn)

Average Case - O(nlogn)

Best Case - O(nlogn)

Program -

void merge sort ( i n t ∗a , i n t n)
{

i n t mid ,∗ l ,∗ r ;
i f ( s i z e ==1) { re turn 1 ;}
mid = s i z e /2 ;
l = new i n t [ mid ] ;
r = new i n t [ s i z e−mid ] ;
f o r ( i n t i =0; i<mid ; i++) l [ i ] = a [ i ] ;
f o r ( i n t i=mid ; i<s i z e ; i++) r [ i−mid ] = a [ i ] ;
MergeSort ( l , mid ) ;
MergeSort ( r , s i z e−mid ) ;
Merge ( l , r , a , mid , s i z e−mid ) ;

}

Plot -

3



5. Quick Sort

Approach - Quick sort is based on the divide-and-conquer approach based on the idea of choosing one element as a pivot
element and partitioning the array around it such that: Left side of pivot contains all the elements that are less than
the pivot element Right side contains all elements greater than the pivot Time complexity of the Bubble sort goes like
this :

Worst Case - O(n2)

Average Case - O(nlogn)

Best Case - O(nlogn)

Program -

void q u i c k s o r t ( i n t ∗a , i n t s ta r t , i n t end )
{

i n t pIndex ;
i f ( s t a r t<end )
{

pIndex=p a r t i t i o n ( a , s t a r t , end ) ;
QuickSort ( a , s t a r t , pIndex −1);
QuickSort ( a , pIndex+1,end ) ;

}
}

Plot -

6. Counting Sort

Approach - In Counting sort, the frequencies of distinct elements of the array to be sorted is counted and stored in an
auxiliary array, by mapping its value as an index of the auxiliary array. Time complexity of the Bubble sort goes like
this :

Worst Case - O(n + k)

Average Case - O(n + k)

Best Case - O(n + k)

Program -
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void c o u n t i n g s o r t ( i n t ∗ arr , i n t n , i n t RANGE)
{

i n t count [RANGE]={0} ;
i n t out [ n ] ;
f o r ( i =0; i<n ; i++) ++count [ a r r [ i ] ] ;
f o r ( i =1; i<RANGE; i++) count [ i ]+=count [ i −1] ;
f o r ( i=n−1; i >=0; i−−){
out [ count [ a r r [ i ] ]−1]= ar r [ i ] ;
−−count [ a r r [ i ] ] ;
}
f o r ( i =0; i<n ; i++) ar r [ i ]=out [ i ] ;

}

Plot -

7. Heap Sort

Approach - Heaps can be used in sorting an array. In max-heaps, maximum element will always be at the root. Heap
Sort uses this property of heap to sort the array.
Consider an array Arr which is to be sorted using Heap Sort.

1) Initially build a max heap of elements in Arr.
2) The root element, that is Arr[1], will contain maximum element of Arr. After that, swap this element with the last
element of Arr and heapify the max heap excluding the last element which is already in its correct position and then
decrease the length of heap by one.
3) Repeat the step 2, until all the elements are in their correct position. Time complexity of the Bubble sort goes like
this :

Worst Case - O(nlogn)

Average Case - O(nlogn)

Best Case - O(nlogn)

Program -

void heap so r t ( i n t ∗a , i n t n)
{

f o r ( i n t i = n / 2 − 1 ; i >= 0 ; i−−)
heap i fy ( arr , n , i ) ;
f o r ( i n t i=n−1; i >=0; i−−)
{

swap ( ar r [ 0 ] , a r r [ i ] ) ;
heap i fy ( arr , i , 0 ) ;

}
}
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Plot -
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