Algorithm 1 PPO

```
1: for iteration = 1, 2, ... do
```

- for $actor = 1, 2, \ldots, N$ do 2:
- Run policy $\pi_{\theta_{old}}$ in environment for T time steps Compute advantage estimates $\hat{A}_1, \ldots, \hat{A}_T$ 3:
- 4:
- end for 5:
- Optimize surrogate L wrt. θ , with K epochs and minibatch size 6: $M \leq NT$
- $\theta_{old} \leftarrow \theta$ 7:
- 8: end for

Algorithm 2 Game Theory Controller

1:	for Every time step do
2:	Calculate target seeking command \mathbf{x}_{tsCmd} (Eq.: 3.12)
3:	for All map measurements from $\mathbf{x}_{Map} \mathbf{do}$
4:	Denormalize measurement (Eq.: 3.14)
5:	Add margin of safety (Eq.: 3.15)
6:	Calculate altitude difference $\Delta h_{ObsSafe_i}$ to aircraft (Eq.: 3.16)
7:	if $\Delta h_{ObsSafe_i} > 0$ then
8:	Add measurement to set of critical measurements \mathcal{M}_{crit} (Eq.:
	3.17)
9:	end if
10:	end for
11:	for All measurements in \mathcal{M}_{crit} do
12:	Calculate local obstacle avoidance vector (Eq.: 3.20)
13:	end for
14:	Sum over all local avoidance vectors (Eq.: 3.22)
15:	Transform to global coordinate frame to receive \mathbf{x}_{oaCmd} (Eq.: 3.23)
16:	Calculate obstacle avoidance weight w_{oa} based on critical zone weight
	(Eq.: 3.24)
17:	Calculate target seeking weight w_{ts} as $1 - w_{oa}$ (Eq.: 3.13)
18:	Calculate command vector $\mathbf{x}_{HSaCmd} = w_{oa}\mathbf{x}_{oaCmd} + w_{ts}\mathbf{x}_{tsCmd}$ (Eq.:
	3.11)

19: **end for**