Convergence of Power Methods

Qi Lei
(Dated: January 26, 2015)
Two versions of Power Method. One is the classical one, the other is with some noise.

Algorithm 1:

Input: Symmetric matrix $A \in \mathbb{R}^{n}$, number of iteration L.

1. Choose $x_{0} \in \mathbb{R}^{n}$.
2. For $l=1$ to L :
(a) $y_{l} \longleftarrow A x_{l}$
(b) $x_{l}=y_{l} /\left\|y_{l}\right\|$

Output: vector x_{L}
Lemma: $\sigma_{1} \leq \sigma_{2}, \leq \cdots \leq \sigma_{n-1}<\sigma_{n}$ are the singular values of symmetric square matrix A. And $z_{1}, z_{2}, \cdots, z_{n}$ are the corresponding right eigenvectors. Denote $\tan \theta_{l}=\tan \theta\left(z_{n}, x_{l}\right)$. Then we have $\tan \theta_{l+1} \leq \tan \theta_{l} \times \sigma_{n-1} / \sigma_{n}$.
Proof. Suppose $x_{l}=\cos \theta_{l} z_{n}+\sin \theta_{l} u_{l} . u_{l} \in z_{n}^{\perp}$.
Then

$$
\begin{aligned}
A x_{l} & =\cos \theta_{l} A z_{n}+\sin \theta_{l} A u_{l} \\
& =\cos \theta_{l} \sigma_{n} z_{n}+\sin \theta_{l}\left\|A u_{l}\right\| \frac{A u_{l}}{\left\|A u_{l}\right\|}
\end{aligned}
$$

Suppose $u_{l}=\sum_{p=1}^{n-1} \alpha_{p} z_{p}$, then $A u_{l}=\sum_{p=0}^{n-1} \sigma_{p} \alpha_{p} z_{p} \in z_{n}^{\perp}$, so

$$
\tan \theta_{l+1}=\frac{\sin \theta_{l}\left\|A u_{l}\right\|}{\cos \theta_{l} \sigma_{n}}
$$

Now $\left\|A u_{l}\right\|^{2}=\sum_{p=1}^{n-1} \sigma_{p}^{2} \alpha_{p}^{2} \leq \max _{p=1}^{n-1}\left\{\sigma_{p}^{2}\right\} \sum_{p=1}^{n-1} \alpha_{p}^{2} \leq \sigma_{n-1}^{2}$. So $\tan \theta_{l}+1 \leq \tan \theta_{l} \frac{\sigma_{n-1}}{\sigma_{n}}$.
Algorithm 2:
Input: Symmetric matrix $A \in \mathbb{R}^{n}$, noise added in each step g_{l}, number of iteration L.

1. Choose $x_{0} \in \mathbb{R}^{n}$.
2. For $l=1$ to L :
(a) $y_{l} \longleftarrow A x_{l}+g_{l}$
(b) $x_{l}=y_{l} /\left\|y_{l}\right\|$

Output: vector x_{L}
Lemma: $\sigma_{1} \leq \sigma_{2}, \leq \cdots \leq \sigma_{n-1}<\sigma_{n}$ are the singular values of symmetric square matrix A. And $z_{1}, z_{2}, \cdots, z_{n}$ are the corresponding right eigenvectors. Denote $\tan \theta_{l}=\tan \theta\left(z_{n}, x_{l}\right) . g_{l}$ is the noise added in each iteration step. Then $\tan \theta_{l+1} \leq \max \left\{\tan \theta_{l} \times \sigma_{n-1} / \sigma_{n}, \tan \left\langle z_{n}, g_{l}\right\rangle\right\}$.
Proof. Suppose $x_{l}=\cos \theta_{l} z_{n}+\sin \theta_{l} u_{l} . u_{l} \in z_{n}^{\perp}$.
Then

$$
\begin{aligned}
y_{l+1}=A x_{l}+g_{l} & =\cos \theta_{l} A z_{n}+\sin \theta_{l} A u_{l}+g_{l} \\
& =\cos \theta_{l} \sigma_{n} z_{n}+\sin \theta_{l} A u_{l}+g_{l}
\end{aligned}
$$

Now suppose $x_{l+1}=\cos \theta_{l+1} z_{n}+\sin \theta_{l+1} u_{l+1}$, for some $u_{l+1} \in z_{n}^{\perp}$. Then

$$
\begin{aligned}
\cos \theta_{l+1} & =z_{n}^{T} x_{l+1}=\left(\cos \theta_{l} \sigma_{n}+z_{n}^{T} g_{l}\right) /\left\|y_{l+1}\right\| \\
\sin \theta_{l+1} & =u_{l+1}^{T} x_{l+1}=\left(\sin \theta_{l} u_{l+1}^{T} A u_{l}+u_{l+1}^{T} g_{l}\right) /\left\|y_{l+1}\right\| \cdot \\
\tan \theta_{l+1} & =\frac{\sin \theta_{l+1}}{\cos \theta_{l+1}} \\
& =\frac{\sin \theta_{l} u_{l+1}^{T} A u_{l}+u_{l+1}^{T} g_{l}}{\cos \theta_{1} \sigma_{n}+z_{n}^{T} g_{l}} \\
& \leq \frac{\sin \theta_{l} u_{l+1}^{T} A u_{l}+\left\|g_{l}\right\| \sin \left\langle z_{n}, g_{l}\right\rangle}{\cos \theta_{l} \sigma_{n}+\left\|g_{l}\right\| \cos \left\langle z_{n}, g_{l}\right\rangle} \\
& \leq \frac{\sin \theta_{l} u_{l+1}^{T} A u_{l}+\left\|g_{l}\right\| \sin \left\langle z_{n}, g_{l}\right\rangle}{\cos \theta_{l} \sigma_{n}-\left\|g_{l}\right\|\left|\cos \left\langle z_{n}, g_{l}\right\rangle\right|}
\end{aligned}
$$

The above part is what appears in the paper and also from the webpage. So what we need to do here is to bound both $\sin \left\langle g_{l}, z_{n}\right\rangle$ and $\cos \left\langle g_{l}, z_{n}\right\rangle$ from above, which means we need just to bound $\left\|g_{l}\right\|$. But this is not possible in our case. So I think about change a little bit about the lemma to the lower part.

$$
\begin{aligned}
\tan \theta_{l+1} & \leq \frac{\sin \theta_{l} u_{l+1}^{T} A u_{l}+\left\|g_{l}\right\| \sin \left\langle z_{n}, g_{l}\right\rangle}{\cos \theta_{l} \sigma_{n}+\left\|g_{l}\right\| \cos \left\langle z_{n}, g_{l}\right\rangle} \quad \text { (Suppose } \sin \left\langle z_{n}, g_{l}\right\rangle, \cos \left\langle z_{n}, g_{l}\right\rangle \text { are positive.) } \\
& \leq \max \left\{\frac{\sin \theta_{l} \sigma_{n-1}}{\cos \theta_{l} \sigma_{n}}, \frac{\sin \left\langle z_{n}, g_{l}\right\rangle}{\cos \left\langle z_{n}, g_{l}\right\rangle}\right\} \\
& =\max \left\{\tan \theta_{l} \frac{\sigma_{n-1}}{\sigma_{n}}, \tan \left\langle z_{n}, g_{l}\right\rangle\right\}
\end{aligned}
$$

Algorithm 2+:

Input: Symmetric matrix $A \in \mathbb{R}^{n}$, selected row number r, number of iteration L.

1. Choose $x_{0} \in \mathbb{R}^{n}, y_{0}=x_{0}$.
2. For $l=1$ to L :
(a) \mathcal{K}_{l} is a random subset of $\{1,2, \cdots, n\},\left|\mathcal{K}_{l}\right|=r, y_{l} \longleftarrow y_{l-1}, y_{l, \mathcal{K}_{l}} \longleftarrow A_{\mathcal{K}_{l}} x_{l}$
(b) $x_{l}=y_{l} /\left\|y_{l}\right\|$

Output: vector x_{L}
Remark: For some matrix of vector X, and set $\mathcal{K} \subset\{1,2, \cdots, n\}$,

$$
X_{\mathcal{K}}=X_{k_{1}, k_{2}, \cdots, k_{r}}=\left[\begin{array}{c}
x_{k_{1}} \\
x_{k_{2}} \\
\cdots \\
x_{k_{r}}
\end{array}\right] \sim\left[\begin{array}{c}
0 \\
\cdots \\
0 \\
x_{k_{1}} \\
0 \\
\cdots \\
0 \\
x_{k_{2}} \\
\cdots \\
x_{k_{r}} \\
0 \\
\cdots \\
0
\end{array}\right]
$$

Some analysis: As in Algorithm 2, the difference between y_{l+1} and $A x_{l}$ could be considered as noise. The noise g_{l} produced by Algorithm $2+$ could be denoted as

$$
\begin{aligned}
g_{l} & =y_{l+1}-A x_{l} \\
& =y_{l}-y_{l, \mathcal{K}_{l}}+A_{\mathcal{K}_{l}} x_{l}-A x_{l} \\
& =\left(I-\mathcal{K}_{l}\right) y_{l}+\left(A_{\mathcal{K}_{l}}-A\right) x_{l} \\
& =\left(A-\left\|y_{l}\right\| I\right)_{\{n\}-\mathcal{K}_{l}} x_{l}
\end{aligned}
$$

So

$$
\begin{aligned}
\tan \left\langle g_{l}, z_{n}\right\rangle & =\frac{\left\|V^{T}\left(A-\left\|y_{l}\right\| I\right)_{\{n\}-\mathcal{K}_{l}} x_{l}\right\|}{z_{n}^{T}\left(A-\left\|y_{l}\right\| I\right)_{\{n\}-\mathcal{K}_{l}} x_{l}} \\
& \left.=\frac{\left\|V_{\{n\}-\mathcal{K}_{l}}^{T}\left(A-\left\|y_{l}\right\| I\right) x_{l}\right\|}{z_{n,\{n\}-\mathcal{K}_{l}}^{T}\left(A-\left\|y_{l}\right\| I\right) x_{l}} \quad \text { (here } V=\left[z_{1}\left|z_{2}\right| \cdots \mid z_{n-1}\right]\right)
\end{aligned}
$$

Some observations between different optimized ways and original power method:

1. uniformly sampled rows

Eventually it will converge. Intuitively, the expected performance of each iteration is just similar to power method in the long run.

However, it may cost a little more time.
2.weighted sampled rows

The larger n is, the lesser $\lambda_{1} / \lambda_{2}$ is, the better weighted sampling performs.
Weight on dominant eigenvector is better than weight on the norm of A.

MATRIX COMPLETION INTUITION

$$
\begin{aligned}
f(x, y) & =\left\|A-\vec{x} \vec{y}^{T}\right\|_{F} \\
& =\sum_{i} \sum_{j}\left(a_{i j}-x_{i} y_{j}\right)^{2} \\
& =\sum_{i}\left\|\vec{a}_{i}-x_{i} \vec{y}\right\|_{2}^{2}
\end{aligned}
$$

For individual i,

$$
\begin{aligned}
& \left\|\vec{a}_{i}-x_{i} \vec{y}\right\|_{2}^{2} \\
= & \left\|x_{i} \vec{y}\right\|_{2}^{2}-2 x_{i} \vec{a}_{i}^{T} \vec{y}+\left\|\vec{a}_{i}\right\|_{2}^{2} \\
= & \|\vec{y}\|_{2}^{2}\left(x_{i}-\frac{a_{i}^{T} y}{\|y\|_{2}^{2}}\right)^{2}+\left\|a_{i}\right\|_{2}^{2}-\frac{\left(a_{i}^{T} y\right)^{2}}{\|y\|_{2}^{2}}
\end{aligned}
$$

Take $x_{i}=\frac{a_{i}^{T} y}{\|y\|_{2}^{2}}$, then $f(x, y)$ reaches its minimum for individual $x_{i}, i=1,2, \cdots, n$, which is $\left\|a_{i}\right\|_{2}^{2}-\frac{\left(a_{i}^{T} y\right)^{2}}{\|y\|_{2}^{2}}$. And $f(x, y)$ correspondingly decreases $\|\vec{y}\|_{2}^{2}\left(x_{i}-\frac{a_{i}^{T} y}{\|y\|_{2}^{2}}\right)^{2}$, written as $\Delta f_{x_{i}}$.
Likewise, for individual $y_{j}, j=1,2, \cdots, n, f(x, y)$ reaches its minimum when we take new $y_{j} \doteq \frac{a_{j}^{T} x}{\|x\|_{2}^{2}}$, and $f(x, y)$ correspondingly decreases $\|\vec{x}\|_{2}^{2}\left(y_{j}-\frac{a_{j}^{T} x}{\|x\|_{2}^{2}}\right)^{2}$, written as $\Delta f_{y_{j}}$.

- Greedy Coordinate Descent:

By comparing the potential decrease of $f(x, y)$, we could apply Greedy Coordinate Descent to this approach. For each step t, we update k entries of $x^{(t)}$ or $y^{(t)}$. Take $x^{(t)}$ as an example. $x_{\Omega}^{(t+1)} \leftarrow A_{\Omega} y^{(t)} /\left|y^{(t)}\right|^{2}$. Then $\Delta f_{x_{\Omega}}^{(t+1)}$ vanishes to 0 . And also $\Delta f_{y}^{(t+1)}=\left\|x^{(t+1)}\right\|_{2}^{2}\left(y_{j}^{(t)}-\frac{a_{j}^{T} x^{(t+1)}}{\left\|x^{(t+1)}\right\|_{2}^{2}}\right)^{2}$. The whole process takes up to $4 k+k n+2 n$ flops.

