Convergence of Power Methods

Qi Lei

(Dated: January 26, 2015)

Two versions of Power Method. One is the classical one, the other is with some noise.

Algorithm 1:

Input: Symmetric matrix $A \in \mathbb{R}^n$, number of iteration L.

1. Choose $x_0 \in \mathbb{R}^n$.

2. For l = 1 to L:

(a) $y_l \longleftarrow Ax_l$

(b) $x_l = y_l / \|y_l\|$

Output: vector x_L

Lemma: $\sigma_1 \leq \sigma_2, \leq \cdots \leq \sigma_{n-1} < \sigma_n$ are the singular values of symmetric square matrix A. And z_1, z_2, \cdots, z_n are the corresponding right eigenvectors. Denote $tan\theta_l = tan\theta(z_n, x_l)$. Then we have $tan\theta_{l+1} \leq tan\theta_l \times \sigma_{n-1}/\sigma_n$. *Proof.* Suppose $x_l = cos\theta_l z_n + sin\theta_l u_l$. $u_l \in z_n^{\perp}$. Then

$$Ax_{l} = \cos\theta_{l}Az_{n} + \sin\theta_{l}Au_{l}$$
$$= \cos\theta_{l}\sigma_{n}z_{n} + \sin\theta_{l}\|Au_{l}\|\frac{Au_{l}}{\|Au_{l}\|}$$

Suppose $u_l = \sum_{p=1}^{n-1} \alpha_p z_p$, then $Au_l = \sum_{p=0}^{n-1} \sigma_p \alpha_p z_p \in z_n^{\perp}$, so

$$tan\theta_{l+1} = \frac{sin\theta_l \|Au_l\|}{cos\theta_l \sigma_n}$$

Now $||Au_l||^2 = \sum_{p=1}^{n-1} \sigma_p^2 \alpha_p^2 \le \max_{p=1}^{n-1} \{\sigma_p^2\} \sum_{p=1}^{n-1} \alpha_p^2 \le \sigma_{n-1}^2$. So $tan\theta_l + 1 \le tan\theta_l \frac{\sigma_{n-1}}{\sigma_n}$.

Algorithm 2:

Input: Symmetric matrix $A \in \mathbb{R}^n$, noise added in each step g_l , number of iteration L.

1. Choose $x_0 \in \mathbb{R}^n$.

2. For l = 1 to *L*:

(a) $y_l \longleftarrow Ax_l + g_l$

(b) $x_l = y_l / ||y_l||$

Output: vector x_L

Lemma: $\sigma_1 \leq \sigma_2, \leq \cdots \leq \sigma_{n-1} < \sigma_n$ are the singular values of symmetric square matrix A. And z_1, z_2, \cdots, z_n are the corresponding right eigenvectors. Denote $tan\theta_l = tan\theta(z_n, x_l)$. g_l is the noise added in each iteration step. Then $tan\theta_{l+1} \leq max\{tan\theta_l \times \sigma_{n-1}/\sigma_n, tan\langle z_n, g_l \rangle\}$.

Proof. Suppose $x_l = \cos \theta_l z_n + \sin \theta_l u_l$. $u_l \in z_n^{\perp}$ Then

$$y_{l+1} = Ax_l + g_l = \cos\theta_l Az_n + \sin\theta_l Au_l + g_l$$
$$= \cos\theta_l \sigma_n z_n + \sin\theta_l Au_l + g_l$$

Now suppose $x_{l+1} = \cos \theta_{l+1} z_n + \sin \theta_{l+1} u_{l+1}$, for some $u_{l+1} \in z_n^{\perp}$. Then

$$\begin{aligned} \cos\theta_{l+1} &= z_n^T x_{l+1} = (\cos\theta_l \sigma_n + z_n^T g_l) / \|y_{l+1}\| \\ \sin\theta_{l+1} &= u_{l+1}^T x_{l+1} = (\sin\theta_l u_{l+1}^T A u_l + u_{l+1}^T g_l) / \|y_{l+1}\| \\ \tan\theta_{l+1} &= \frac{\sin\theta_{l+1}}{\cos\theta_{l+1}} \\ &= \frac{\sin\theta_l u_{l+1}^T A u_l + u_{l+1}^T g_l}{\cos\theta_l \sigma_n + z_n^T g_l} \\ &\leq \frac{\sin\theta_l u_{l+1}^T A u_l + \|g_l\| |\sin\langle z_n, g_l\rangle}{\cos\theta_l \sigma_n + \|g_l\| |\cos\langle z_n, g_l\rangle} \\ &\leq \frac{\sin\theta_l u_{l+1}^T A u_l + \|g_l\| |\sin\langle z_n, g_l\rangle}{\cos\theta_l \sigma_n - \|g_l\| |\cos\langle z_n, g_l\rangle} \end{aligned}$$

The above part is what appears in the paper and also from the webpage. So what we need to do here is to bound both $sin\langle g_l, z_n \rangle$ and $cos\langle g_l, z_n \rangle$ from above, which means we need just to bound $||g_l||$. But this is not possible in our case. So I think about change a little bit about the lemma to the lower part.

$$\begin{split} \tan \theta_{l+1} &\leq \frac{\sin \theta_l u_{l+1}^T A u_l + \|g_l\| \sin \langle z_n, g_l \rangle}{\cos \theta_l \sigma_n + \|g_l\| \cos \langle z_n, g_l \rangle} \quad \text{(Suppose } \sin \langle z_n, g_l \rangle, \cos \langle z_n, g_l \rangle \text{ are positive.)} \\ &\leq \max \{ \frac{\sin \theta_l \sigma_{n-1}}{\cos \theta_l \sigma_n}, \frac{\sin \langle z_n, g_l \rangle}{\cos \langle z_n, g_l \rangle} \} \\ &= \max \{ \tan \theta_l \frac{\sigma_{n-1}}{\sigma_n}, \tan \langle z_n, g_l \rangle \} \end{split}$$

Algorithm 2+:

Input: Symmetric matrix $A \in \mathbb{R}^n$, selected row number r, number of iteration L.

1. Choose $x_0 \in \mathbb{R}^n, y_0 = x_0$.

2. For l = 1 to L:

(a) \mathcal{K}_l is a random subset of $\{1, 2, \cdots, n\}, |\mathcal{K}_l| = r, y_l \longleftarrow y_{l-1}, y_{l,\mathcal{K}_l} \longleftarrow A_{\mathcal{K}_l} x_l$ (b) $x_l = y_l / ||y_l||$

Output: vector x_L

Remark: For some matrix of vector X, and set $\mathcal{K} \subset \{1, 2, \cdots, n\}$,

$$X_{\mathcal{K}} = X_{k_{1},k_{2},\cdots,k_{r}} = \begin{bmatrix} x_{k_{1}} \\ x_{k_{2}} \\ \cdots \\ x_{k_{r}} \end{bmatrix} \sim \begin{pmatrix} 0 \\ \cdots \\ 0 \\ x_{k_{1}} \\ 0 \\ \cdots \\ 0 \\ x_{k_{2}} \\ \cdots \\ x_{k_{r}} \\ 0 \\ \cdots \\ 0 \\ 0 \\ \end{pmatrix}$$

Some analysis: As in Algorithm 2, the difference between y_{l+1} and Ax_l could be considered as noise. The noise g_l produced by Algorithm 2+ could be denoted as

$$g_{l} = y_{l+1} - Ax_{l}$$

= $y_{l} - y_{l,\mathcal{K}_{l}} + A_{\mathcal{K}_{l}}x_{l} - Ax_{l}$
= $(I - I_{\mathcal{K}_{l}})y_{l} + (A_{\mathcal{K}_{l}} - A)x_{l}$
= $(A - ||y_{l}||I)_{\{n\}-\mathcal{K}_{l}}x_{l}$

 So

$$\begin{aligned} \tan\langle g_l, z_n \rangle &= \frac{\|V^T(A - \|y_l\|I)_{\{n\} - \mathcal{K}_l} x_l\|}{z_n^T(A - \|y_l\|I)_{\{n\} - \mathcal{K}_l} x_l} \\ &= \frac{\|V_{\{n\} - \mathcal{K}_l}^T(A - \|y_l\|I) x_l\|}{z_{n,\{n\} - \mathcal{K}_l}^T(A - \|y_l\|I) x_l} \quad \text{(here } V = [z_1|z_2|\cdots|z_{n-1}]) \end{aligned}$$

Some observations between different optimized ways and original power method: 1. uniformly sampled rows

Eventually it will converge. Intuitively, the expected performance of each iteration is just similar to power method in the long run.

However, it may cost a little more time.

2.weighted sampled rows

The larger n is, the lesser λ_1/λ_2 is, the better weighted sampling performs.

Weight on dominant eigenvector is better than weight on the norm of A.

MATRIX COMPLETION INTUITION

$$f(x,y) = ||A - \vec{x}\vec{y}^{T}||_{F} = \sum_{i} \sum_{j} (a_{ij} - x_{i}y_{j})^{2} = \sum_{i} ||\vec{a}_{i} - x_{i}\vec{y}||_{2}^{2}$$

For individual i,

$$\begin{aligned} &\|\vec{a}_{i} - x_{i}\vec{y}\|_{2}^{2} \\ &= \|x_{i}\vec{y}\|_{2}^{2} - 2x_{i}\vec{a}_{i}^{T}\vec{y} + \|\vec{a}_{i}\|_{2}^{2} \\ &= \|\vec{y}\|_{2}^{2}(x_{i} - \frac{a_{i}^{T}y}{\|y\|_{2}^{2}})^{2} + \|a_{i}\|_{2}^{2} - \frac{(a_{i}^{T}y)^{2}}{\|y\|_{2}^{2}} \end{aligned}$$

Take $x_i = \frac{a_i^T y}{\|y\|_2^2}$, then f(x, y) reaches its minimum for individual $x_i, i = 1, 2, \cdots, n$, which is $\|a_i\|_2^2 - \frac{(a_i^T y)^2}{\|y\|_2^2}$. And f(x, y) correspondingly decreases $\|\vec{y}\|_2^2 (x_i - \frac{a_i^T y}{\|y\|_2^2})^2$, written as Δf_{x_i} .

Likewise, for individual y_j , $j = 1, 2, \dots, n$, f(x, y) reaches its minimum when we take new $y_j \doteq \frac{a_j^T x}{\|x\|_2^2}$, and f(x, y) correspondingly decreases $\|\vec{x}\|_2^2 (y_j - \frac{a_j^T x}{\|x\|_2^2})^2$, written as Δf_{y_j} .

• Greedy Coordinate Descent:

By comparing the potential decrease of f(x, y), we could apply Greedy Coordinate Descent to this approach. For each step t, we update k entries of $x^{(t)}$ or $y^{(t)}$. Take $x^{(t)}$ as an example. $x_{\Omega}^{(t+1)} \leftarrow A_{\Omega} y^{(t)} / |y^{(t)}|^2$. Then $\Delta f_{x_{\Omega}}^{(t+1)}$ vanishes to 0. And also $\Delta f_y^{(t+1)} = ||x^{(t+1)}||_2^2 (y_j^{(t)} - \frac{a_j^T x^{(t+1)}}{||x^{(t+1)}||_2^2})^2$. The whole process takes up to 4k + kn + 2n flops.