Two Simple Proofs for Cramer's Rule

Frank the Giant Bunny

April 9, 2016

Given a non-singular linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, Cramer's rule states $x_{k}=\frac{\operatorname{det} \boldsymbol{A}_{\boldsymbol{k}}}{\operatorname{det} \boldsymbol{A}}$ where \boldsymbol{A}_{k} is obtained from \boldsymbol{A} by replacing the $k^{\text {th }}$ column $\boldsymbol{A}_{* k}$ by \boldsymbol{b}; that is,

$$
\begin{equation*}
\boldsymbol{A}_{k}=\left[\boldsymbol{A}_{* 1}, \cdots, \boldsymbol{A}_{* k-1}, \boldsymbol{b}, \boldsymbol{A}_{* k+1}, \cdots, \boldsymbol{A}_{* n}\right]=\boldsymbol{A}+\left(\boldsymbol{b}-\boldsymbol{A}_{* k}\right) \boldsymbol{e}_{k}^{\top} \tag{1}
\end{equation*}
$$

where \boldsymbol{e}_{k} is the $k^{\text {th }}$ unit vector. The proof for Cramer's rule usually begins with writing down the cofactor expansion of $\operatorname{det} \boldsymbol{A}$. This note explains two alternative and simple approaches.

As explained in the page 476 of Meyer's textbook ${ }^{1}$, one can exploit the rank-one update form in (1). The Matrix Determinant Lemma states that

$$
\operatorname{det}\left(\boldsymbol{A}+\boldsymbol{x} \boldsymbol{y}^{\boldsymbol{\top}}\right)=\left(1+\boldsymbol{y}^{\boldsymbol{\top}} \boldsymbol{A}^{-1} \boldsymbol{x}\right) \operatorname{det} \boldsymbol{A}
$$

where \boldsymbol{A} is an $n \times n$ non-singular matrix and two vectors $\boldsymbol{x}, \boldsymbol{y}$ are $n \times 1$ column vectors. Then

$$
\begin{array}{rlr}
\operatorname{det} \boldsymbol{A}_{k} & =\operatorname{det}\left(\boldsymbol{A}+\left(\boldsymbol{b}-\boldsymbol{A}_{* k}\right) \boldsymbol{e}_{k}^{\top}\right) & \text { by definition of } \boldsymbol{A}_{k} \\
& =\left\{1+\boldsymbol{e}_{k}^{\top} \boldsymbol{A}^{-1}\left(\boldsymbol{b}-\boldsymbol{A}_{* k}\right)\right\} \operatorname{det} \boldsymbol{A} & \text { by Matrix Determinant Lemma } \\
& =\left\{1+\boldsymbol{e}_{k}^{\top}\left(\boldsymbol{x}-\boldsymbol{e}_{k}\right)\right\} \operatorname{det} \boldsymbol{A} & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \text { and } \boldsymbol{A} \boldsymbol{e}_{k}=\boldsymbol{A}_{* k} \\
& =\left\{1+\left(x_{k}-1\right)\right\} \operatorname{det} \boldsymbol{A} & \boldsymbol{e}_{k}^{\top} \boldsymbol{x}=x_{k} \text { and } \boldsymbol{e}_{k}^{\top} \boldsymbol{e}_{k}=1 \\
& =x_{k} \operatorname{det} \boldsymbol{A} & \text { by canceling out }
\end{array}
$$

which completes the proof.
Another simple proof due to Stephen M. Robinson ${ }^{2}$ begins by viewing x_{k} as a determinant

$$
x_{k}=\operatorname{det} \boldsymbol{I}_{k}=\operatorname{det}\left[\boldsymbol{e}_{1} \cdots, \boldsymbol{e}_{k-1}, \boldsymbol{x}, \boldsymbol{e}_{k+1}, \cdots, \boldsymbol{e}_{n}\right]
$$

where \boldsymbol{I}_{k} is obtained from the identity matrix \boldsymbol{I} by replacing the $k^{\text {th }}$ column by \boldsymbol{x}. Then $\boldsymbol{A} \boldsymbol{I}_{k}$ directly yields the matrix \boldsymbol{A}_{k} in (1) without resort to rank-one update.

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{I}_{k} & =\boldsymbol{A}\left[\boldsymbol{e}_{1} \cdots, \boldsymbol{e}_{k-1}, \boldsymbol{x}, \boldsymbol{e}_{k+1}, \cdots, \boldsymbol{e}_{n}\right] \\
& =\left[\boldsymbol{A} \boldsymbol{e}_{1} \cdots, \boldsymbol{A} \boldsymbol{e}_{k-1}, \boldsymbol{A} \boldsymbol{x}, \boldsymbol{A} \boldsymbol{e}_{k+1}, \cdots, \boldsymbol{A} \boldsymbol{e}_{n}\right] \\
& =\left[\boldsymbol{A}_{* 1}, \cdots, \boldsymbol{A}_{* k-1}, \boldsymbol{b}, \boldsymbol{A}_{* k+1}, \cdots, \boldsymbol{A}_{* n}\right] \\
& =\boldsymbol{A}_{k}
\end{aligned}
$$

Then,

$$
x_{k}=\operatorname{det} \boldsymbol{I}_{k}=\operatorname{det} \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{I}_{k}=\operatorname{det} \boldsymbol{A}^{-1} \boldsymbol{A}_{k}=\operatorname{det} \boldsymbol{A}^{-1} \operatorname{det} \boldsymbol{A}_{k}=\frac{\operatorname{det} \boldsymbol{A}_{k}}{\operatorname{det} \boldsymbol{A}}
$$

which exploits the fact that $\operatorname{det} \boldsymbol{M}^{-1}=1 / \operatorname{det} \boldsymbol{M}$ and $\operatorname{det} \boldsymbol{M} \boldsymbol{N}=\operatorname{det} \boldsymbol{M} \operatorname{det} \boldsymbol{N}$ for two square matrices \boldsymbol{M} and \boldsymbol{N} of the same size.

[^0]
[^0]: ${ }^{1}$ Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2001.
 ${ }^{2}$ Stephen M. Robinson, "A Short Proof of Cramer's Rule", Mathematics Magazine, 43(2), 94-95, 1970.

