Two Simple Proofs for Cramer's Rule

Frank the Giant Bunny

April 9, 2016

Given a non-singular linear system Ax = b, Cramer's rule states $x_k = \frac{\det A_k}{\det A}$ where A_k is obtained from A by replacing the k^{th} column A_{*k} by b; that is,

$$\boldsymbol{A}_{k} = \left[\boldsymbol{A}_{*1}, \cdots, \boldsymbol{A}_{*k-1}, \boldsymbol{b}, \boldsymbol{A}_{*k+1}, \cdots, \boldsymbol{A}_{*n}\right] = \boldsymbol{A} + (\boldsymbol{b} - \boldsymbol{A}_{*k})\boldsymbol{e}_{k}^{\mathsf{T}}$$
(1)

where e_k is the k^{th} unit vector. The proof for Cramer's rule usually begins with writing down the cofactor expansion of det A. This note explains two alternative and simple approaches.

As explained in the page 476 of Meyer's textbook¹, one can exploit the rank-one update form in (1). The *Matrix Determinant Lemma* states that

$$\det(\boldsymbol{A} + \boldsymbol{x}\boldsymbol{y}^{\mathsf{T}}) = (1 + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{A}^{-1}\boldsymbol{x})\det\boldsymbol{A}$$

where A is an $n \times n$ non-singular matrix and two vectors x, y are $n \times 1$ column vectors. Then

$$\det \mathbf{A}_{k} = \det \left(\mathbf{A} + (\mathbf{b} - \mathbf{A}_{*k}) \mathbf{e}_{k}^{\mathsf{T}} \right)$$
 by definition of \mathbf{A}_{k}

$$= \left\{ 1 + \mathbf{e}_{k}^{\mathsf{T}} \mathbf{A}^{-1} (\mathbf{b} - \mathbf{A}_{*k}) \right\} \det \mathbf{A}$$
 by Matrix Determinant Lemma

$$= \left\{ 1 + \mathbf{e}_{k}^{\mathsf{T}} (\mathbf{x} - \mathbf{e}_{k}) \right\} \det \mathbf{A}$$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{A}\mathbf{e}_{k} = \mathbf{A}_{*k}$

$$= \left\{ 1 + (x_{k} - 1) \right\} \det \mathbf{A}$$
 $\mathbf{e}_{k}^{\mathsf{T}} \mathbf{x} = x_{k}$ and $\mathbf{e}_{k}^{\mathsf{T}} \mathbf{e}_{k} = 1$

$$= x_{k} \det \mathbf{A}$$
 by canceling out

which completes the proof.

Another simple proof due to Stephen M. Robinson² begins by viewing x_k as a determinant

$$x_k = \det I_k = \det |e_1 \cdots, e_{k-1}, x, e_{k+1}, \cdots, e_n|$$

where I_k is obtained from the identity matrix I by replacing the k^{th} column by x. Then AI_k directly yields the matrix A_k in (1) without resort to rank-one update.

$$egin{aligned} oldsymbol{AI}_k &= oldsymbol{A}oldsymbol{[e_1} \cdots, oldsymbol{e_{k-1}}, oldsymbol{x}, oldsymbol{e_{k+1}}, \cdots, oldsymbol{e_n}egin{aligned} &= oldsymbol{[Ae_1} \cdots, oldsymbol{Ae_{k-1}}, oldsymbol{Ax}, oldsymbol{Ae_{k+1}}, \cdots, oldsymbol{Ae_n}egin{aligned} &= oldsymbol{[A_{*1}}, \cdots, oldsymbol{A_{*k-1}}, oldsymbol{b}, oldsymbol{A_{*k+1}}, \cdots, oldsymbol{Ae_{*n}}egin{aligned} &= oldsymbol{[A_{*1}}, \cdots, oldsymbol{A_{*k-1}}, oldsymbol{b}, oldsymbol{Ae_{k+1}}, \cdots, oldsymbol{Ae_{*n}}egin{aligned} &= oldsymbol{[Ae_1}, \cdots, oldsymbol{A_{*k-1}}, oldsymbol{b}, oldsymbol{Ae_{*k+1}}, \cdots, oldsymbol{Ae_{*n}}egin{aligned} &= oldsymbol{[A_{*1}}, \cdots, oldsymbol{A_{*k-1}}, oldsymbol{b}, oldsymbol{Ae_{*k+1}}, \cdots, oldsymbol{A_{*n}}egin{aligned} &= oldsymbol{Ae_{*n}} oldsymbol{Ae_$$

Then,

$$x_k = \det \boldsymbol{I}_k = \det \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{I}_k = \det \boldsymbol{A}^{-1} \boldsymbol{A}_k = \det \boldsymbol{A}^{-1} \det \boldsymbol{A}_k = \frac{\det \boldsymbol{A}_k}{\det \boldsymbol{A}}$$

which exploits the fact that det $M^{-1} = 1/\det M$ and det $MN = \det M \det N$ for two square matrices M and N of the same size.

¹Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2001.

²Stephen M. Robinson, "A Short Proof of Cramer's Rule", Mathematics Magazine, 43(2), 94–95, 1970.