THE VOLUME OF n-BALLS

Cerbi Ritchey

May 3rd, 2017

Introduction

- Our goal is to derive a formula for the volume of n-dimensional balls in \mathbb{R}^{n}.
- Let's begin with some familiar definitions, and we will rely on our intuition to start.

Definition

For a natural number $n \geq 1$, an $(n-1)$-dimensional sphere of radius r is the set of all points in \mathbb{R}^{n} which are a fixed distance r from a given center point.

- We take the center to be the origin and denote the $(n-1)$-sphere of radius r in \mathbb{R}^{n} by $\mathbb{S}^{n-1}(r)$. That is,

$$
\mathbb{S}^{n-1}(r)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=r^{2}\right\}
$$

- First, notice when $n=1$, the 0 -sphere is just the two points on the real line at r and $-r$.
- When $n=2$, we have $\mathbb{S}^{1}(r)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}=r^{2}\right\}$
- Taking $n=3, \mathbb{S}^{2}(r)$ is the sphere in \mathbb{R}^{3} given by $\mathbb{S}^{2}(r)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=r^{2}\right\}$
- Now, $\mathbb{S}^{n}(r)$ is harder to visualize in higher dimensions, but we can use our intuition of lower dimensional spheres to help us.
- Let's try and visualize the 3 -sphere. If we take a 0 -sphere, which is just the endpoints of a line segment in \mathbb{R}^{1}, and rotate it about the origin, what do we have?

Correct. We have a 1 -sphere in \mathbb{R}^{2}, also known as a circle.

- Now, if we take this circle and rotate every point about any axis going through the center point and lying in the \mathbb{R}^{2} plane, we will have the 2-sphere in \mathbb{R}^{3}.
- We think of the 3 -sphere in the same way. If we take the 2 -sphere in \mathbb{R}^{3}, and rotate every point about any axis going through the center point, we will have the 3 -sphere in \mathbb{R}^{4}.
- This is difficult to visualize, but this inductive process we are doing in our minds is actually exactly what we will do mathematically.
- So.....let the fun begin :)

Recall:

Orthogonal matrices represent linear transformations that preserve the dot product of vectors. They represent isometries of Euclidean space (distance preserving) and denote rotations or reflections.

- By definition, orthogonal matrices have determinant ± 1. The matrices in the group of orthogonal matrices in \mathbb{R}^{n} with determinant +1 represent the rotations. These are called special orthogonal matrices and are given by

$$
\mathrm{SO}(n)=\left\{A: A^{T} A=I ; \operatorname{det} A=1\right\}
$$

Consider the following rotation given as a square matrix in $\mathrm{SO}(n+1)$.

$$
A_{j}=\left[\begin{array}{ccc}
I_{j-1} & 0 & 0 \\
0 & R & 0 \\
0 & 0 & I_{n-j}
\end{array}\right]
$$

for $1 \leq j \leq n$, where

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

is a 2×2 (counter-clockwise) rotation matrix, I_{k} is the $k \times k$ identity matrix, and j specifies where the rotation matrix is placed.

For example, A_{1} is the $(n+1) \times(n+1)$ matrix

$$
A_{1}=\left[\begin{array}{cc}
R & 0 \\
0 & I_{n-1}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Notice that in this case and in general, the determinant will always be 1.
- Also, since $A_{j}^{T}=A_{j}^{-1}, A_{j}$ is in the special orthogonal group.

Okay cool. So how does this help us?

- To help us see that these matrices generate spheres in \mathbb{R}^{n+1}, let's look at the case with $n=3$ to find a parametrization of a 3 -sphere in \mathbb{R}^{4}. We start with the point $P=(1,0,0,0)$ in \mathbb{R}^{4} and inductively apply our rotations. Applying the rotation A_{1} to P for $0 \leq \theta<2 \pi$, we have

$$
\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=(\cos \theta, \sin \theta, 0,0)
$$

- Notice that this is a parametrization of the circle $S^{1} \subset \mathbb{R}^{4}$ lying in the $x_{1} x_{2}$-plane.

Now let's apply the rotation A_{2} to our circle in the $x_{1} x_{2}$-plane. This gives

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi & -\sin \phi & 0 \\
0 & \sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
0 \\
0
\end{array}\right]=(\cos \theta, \cos \phi \sin \theta, \sin \phi \sin \theta, 0)
$$

where $0 \leq \theta \leq \pi$ and $0 \leq \phi<2 \pi$. This gives us a 2-sphere lying in $x_{1} x_{2} x_{3}$-space. Notice that the parametrization resembles spherical coordinates.

Continuing in this way, let the new variable ψ range from 0 to 2π, and letting ϕ and θ range from 0 to π, we have our parametrization of the 3-sphere in \mathbb{R}^{4} :
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \psi & -\sin \psi \\ 0 & 0 & \sin \psi & \cos \psi\end{array}\right]\left[\begin{array}{c}\cos \theta \\ \cos \phi \sin \theta \\ \sin \phi \sin \theta \\ 0\end{array}\right]=(\cos \theta, \cos \phi \sin \theta, \cos \psi \sin \phi \sin \theta, \sin \psi \sin$

- "Thus we can see that rotations in higher dimensions can be realized as the action of a linear transformation in which there is one free parameter. This parameter does a rotation in two dimensions and leaves all other dimensions fixed."

Continuing in this way, we now have a parametrization of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$ given by

$$
\begin{gathered}
x_{1}=\cos \theta_{1} \\
x_{2}=\sin \theta_{1} \cos \theta_{2} \\
x_{3}=\sin \theta_{1} \sin \theta_{2} \cos \theta_{3} \\
\vdots \\
x_{n-1}=\sin \theta_{1} \ldots \sin \theta_{n-2} \cos \theta_{n-1} \\
x_{n}=\sin \theta_{1} \ldots \sin \theta_{n}-2 \sin \theta_{n-1},
\end{gathered}
$$

where $0 \leq \theta_{n-1}<2 \pi$ and $0 \leq \theta_{i} \leq \pi$, for $i=1,2, \ldots, n-2$. This will be useful, I promise.

The following integral formula for $\int \sin ^{m} \theta d \theta$ will help us. For any integer $m \geq 2$, we have

$$
\int_{0}^{\pi} \sin ^{m} \theta=-\left.\frac{\sin ^{m-1} \theta \cos \theta}{m}\right|_{\theta=0} ^{\theta=\pi}+\int_{0}^{\pi} \sin ^{m-2} \theta d \theta=\int_{0}^{\pi} \sin ^{m-2} \theta d \theta
$$

Note that when m is even, say $m=2 k$, then

$$
\int_{0}^{\pi} \sin ^{2 k} \theta d \theta=\frac{2 k-1}{2 k} \cdot \frac{2 k-3}{2 k-2} \cdots \frac{3}{4} \cdot \frac{1}{2} \cdot \pi
$$

Similarly, when m is odd, say $m=2 k+1$, then

$$
\int_{0}^{\pi} \sin ^{2 k+1} \theta d \theta=\frac{2 k}{2 k+1} \cdot \frac{2 k-2}{2 k-1} \cdots \frac{4}{5} \cdot \frac{2}{3} \cdot 2
$$

Tables and Figures

- Use tabular for basic tables - see Table 1, for example.
- You can upload a figure (JPEG, PNG or PDF) using the files menu.
- To include it in your document, use the includegraphics command (see the comment below in the source code).

Item	Quantity
Widgets	42
Gadgets	13

Table 1: An example table.

Readable Mathematics

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent and identically distributed random variables with $\mathrm{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}<\infty$, and let

$$
S_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\frac{1}{n} \sum_{i}^{n} X_{i}
$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}\left(S_{n}-\mu\right)$ converge in distribution to a normal $\mathcal{N}\left(0, \sigma^{2}\right)$.

