
The Mathematics of Cryptography

Joseph Allen

11/12/2014

1 Introduction

Cryptography is the study of methods of secure communication between a given
number of parties.

Mathematical theory and computer science are heavily involved in modern
cryptography. In World War 2, the German enigma machine was used to en-
crypt messages, and in turn, efforts by British cryptanalysts eventually resulted
in their decryption.
Cryptography relies on keys; a key is a piece of information which determines
the result of a cryptographic algorithm. In encryption it allows the conversion
of plaintext(the information being transmitted) into ciphertext(the encoded in-
formation), or vice versa for decryption.

2 Symmetric-Key Cryptography

Sender
plaintext

encrypt ciphertext decrypt
Recipient
plaintext

Shared Key

Symmetric key cryptography uses the same algorithm for encryption and
decryption.
Caesar’s Cipher is one of the most simple, well known methods of encryption. It
is a substitution cipher;units of plaintext are replaced with those of ciphertext
to encrypt, and vice versa for encryption. Caesar’s Cipher originally used a shift
of three to the right on the alphabet, giving it a key of 3.
That is to say:

ABCDEFGHIJKLMNOPQRSTUVWXYZ⇒ DEFGHIJKLMNOPQRSTUVWXYZABC

This can also be represented with modular arithmetic as follows:

En(x) = (x + n) mod 26 for encryption

Dn(x) = (x− n) mod 26 for decryption

1



This can be coded in python:

key = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’,

’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’]

And the code for encryption:

def basicencrypt(s):

"""

This function takes a string of plaintext and produces a string of ciphertext

Input: String of plaintext

Output: Encrypted string of ciphertext

"""

c = "" #string of ciphercode

f = 0

for n in s:

for k in range(len(key)):

if n == key[k]:

if k <= 22:

f = k + 3

c += key[f]

elif k == 23:

c += key[0]

elif k == 24:

c += key[1]

elif k == 23:

c += key[2]

return c

And the code for decryption:

def basicdecrypt(s):

"""

This function takes a string of ciphertext and produces a string of plaintext

Input: String of ciphertext

Output: Encrypted string of plaintext

"""

p = "" #string of plaintext

f = 0

for n in s:

for k in range(len(key)):

if n == key[k]:

if k >= 3:

p += key[k-3]

elif k == 0:

p += key[-3]

elif k == 1:

p += key[-2]

elif k == 2:

p += key[-1]

return p

2



3 Asymmetric-Key Cryptography

Sender
plaintext

encrypt ciphertext decrypt
Recipient
plaintext

Public Key Private Key

In asymmetric-key cryptography, also known as public key cryptography,
the usage of different keys has numerous benefits.Despite being mathematically
related, it is incredibly difficult to compute the private key from the public
one. This prevents the lapse in security should a key become compromised, and
allows fewer keys between a greater number of people. Prime numbers are used
as keys, as factoring large primes is a very time consuming task and therefore
very difficult with higher bit encryptions. For example:

Two distinct prime numbers, x and y, form private keys.

Their product, xy, is a public key.

If x = 101, y = 139 then the product xy is 14039

The prime numbers used are smaller than usual, but the product is still

time-consuming to factorise.

4 Cryptanalysis

Cryptanalysis is defined as finding and exploiting weaknesses within a crypto-
graphic scheme, in order to gain access to its contents without requiring a key.
The method used largely revovles around the encryption system. Asymmetric
keys, due to their reliance on more complex mathematical problems, are more
widely linked to greater mathematical research. Brute force attacks consist of
systemetically iterating over every possible passcodes/keys until the correct one
is found. The following is a piece of brute force code written to find a combina-
tion of lower case letters that make up a simple password.

def brute(c):

"""

This function compiles a list of possible combinations of the number of letters

"""

count = 0

possibilities = []

alphabet = ’abcdefghijklmnopqrstuvwxyz’

for n in range(len(c)):

a = [i for i in alphabet]

for y in range(n):

a = [x+i for i in alphabet for x in a]

possibilities = possibilities + a

3



for p in possibilities:

count += 1

if p == c:

return count, c

5 References

www.wikipedia.org, www.cs.cornell.edu

4


	Introduction
	Symmetric-Key Cryptography
	Asymmetric-Key Cryptography
	Cryptanalysis
	References

