
Single Precision Barrett Reduction

Jacob Wells

June 28, 2014

Abstract

NOTE: I am not a professional mathematician nor am I a professional
programmer, so please do not hold this paper to the same standards you
would them. If you find any errors, please feel free to contact me at
jacob.f.wells@gmail.com

1 Introduction

Modular Multiplication is a heavily researched area of Mathematics and Com-
puter Science. It’s use in Public Key Encryption has been a driving force for
faster multiplication and modular reduction algorithms. Here I will show a way
to reduce a 2N-bit by N-bit integer using a precomputed N-bit reciprocal, and
two N-bit multiplications. This can be used in both word size arithmetic, as
well as arbitrary-precision arithmetic.

2 Background

I arrived at this idea while trying to speed up Modular Multiplication in As-
sembly Language. There are already several well known ways for speeding up
Division, the first of which being multiplication by a precomputed Reciprocal,
followed by a Bit Shift. Unfortunately this only works if both the Dividend and
Divisor fit in a computer word. In my case, I was multiplying two N-Bit integers
and getting a 2N-Bit Product. There is also Barrett Reduction[1], which is de-
signed to work in with 2N-Bit answers. Here, you calculate a 2N-Bit Reciprocal,
and Multiply it by your 2N-Bit product. Unfortunately this technique is better
suited for BigInteger algorithms: while it can be done in word size arithmetic,
it is almost always slower than the naive multiply and divide.

The last commonly technique is to use Montgomery Reduction[3]. Unfortu-
nately this requires the two multipliers to first be converted into Montgomery
Form, apply this reduction technique, then convert them back, which is expen-
sive if you don’t use the same numbers multiple times. Also, this technique is
slower if the Modulus is an even number[2], in which case you must perform
additional multiplications.

I arrived at this idea after I observed that a trial quotient could be generated
using only the Significant Bits of the product we wish to reduce. In this case,
Significant Bits refers to all the bits higher than the most significant bit of the
modulus, similar to Barrett Multiplication. The downsize to this technique is
that there is a higher error in the trial Quotient. With Barrett Multiplication,

1



the Quotient is usually exact, or 1 less than the true quotient. With this tech-
nique, the Quotient can be off by at most 4. In practice however, the Quotient
is usually off by 1 or 2, sometimes 3, and rarely 4. Compared to Barrett Reduc-
tion, this allows us to trade off the extra multiplications for at most 3 additional
subtractions.

3 Technique

Let M , the Modulus, be a positive integer. Let A, the Dividend to be reduced,
be a positive integer such that (M − 1)2 ≥ A. Let X be a positive integer such
that 2X ≥M > 2X−1.

First we must calulate the N-Bit Reciprocal.

R = b2
2X−1

M
c

Next we need to get the Significant Bits from the Dividend.

H = b A
2x
c

And we get our Trial Quotient QT by Dividing RH by 2X−1.

QT =
RH

2X−1

Of course, as we are using integer arithmetic, this can done using a Bit Shift.

QT = F >> (X − 1)

4 Examples

For our examples we will use M = 121 and A = 100 ∗ 111 = 11100. Our
Exponent X will be 7, as 27 = 128 and 128 ≥ 121 > 64.

Our Reciprocal R will be

R = b2
2∗7−1

121
c = b8192

121
c = 67

And our most Significant Bits are

H = b11100

128
c = 86

Now we can calculating our Trial Quotient QT

QT = b86 ∗ 67

2X−1
c = b5762

64
c = 90

Using this we can calculate our Remainder Estimate

RT = 11100− (121 ∗ 90) = 210

210 > 121, so we subtract 121 and get 89. And indeed, 11100−(121∗91) = 89

2



5 Proof

This technique is based on the identity

A

M
=

A
2X

22X−1

M

2X−1

What I will prove is

A

M
= b
b A
2X
cb 2

2X−1

M c
2X−1

c+ ET

Which I will do by showing that the Error Term ET is

0 ≤ ET < 5

So first off, we need to know some conditions for R and H.

R = b2
2X−1

M
c, R < 2M

H = b A
2x
c, H < M

So using the floor identity, we can show that

A

2X
= b A

2X
c+ E1

0 ≤ E1 < 1

22X−1

M
= b2

2X−1

M
c+ E2

0 ≤ E2 < 1

Now we can show that

A

2X
22X−1

M
= b A

2X
cb2

2X−1

M
c+ P1 + P2 + P3

P1 = E2b
A

2X
c

P2 = E1b
22X−1

M
c

P3 = E1E2

Using our already established restrictions, we know that

0 ≤ P1 < M

0 ≤ P2 < 2M

0 ≤ P3 < 1

P1, P2, and P3 constitute our current error term, so we can simplify our
equation by stating that

3



A

2X
22X−1

M
= b A

2X
cb2

2X−1

M
c+ E3

E3 = P1 + P2 + P3

0 ≤ E3 < 3M + 1

And for the final part, we can show that

A

M
=
b A
2X
cb 2

2X−1

M c
2X−1

+
E3

2X−1

Again, using the floor identity we can show that

b A
2X
cb 2

2X−1

M c
2X−1

= b
b A
2X
c ∗ b 2

2X−1

M c
2X−1

c+ E4

0 ≤ E4 < 1

And for the second part of the Error Term

E3

2X−1
<

3M + 1

2X−1
< 4

Now can define the Total Error Term to be

ET = E4 + E5

0 ≤ ET < 5

And so we can show that

A

M
= b
b A
2X
cb 2

2X−1

M c
2X−1

c+ ET

0 ≤ ET < 5

6 Conclusion

This technique provides an excellent way of speeding up Modular Multiplica-
tions. While not quite as fast as Montgomery Reduction for odd moduli, it is
faster for even moduli, as well as situations where additional operations would
need to be performed that required the numbers to be converted back and forth
from the Montgomery Domain.

References

[1] Paul Barrett. Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor. In Advances in
cryptology—CRYPTO’86, pages 311–323. Springer, 1987.

[2] ÇK Koç. Montgomery reduction with even modulus. IEE Proceedings-
Computers and Digital Techniques, 141(5):314–316, 1994.

[3] Peter L Montgomery. Modular multiplication without trial division. Math-
ematics of computation, 44(170):519–521, 1985.

4


