Simple Mathematical Induction

Ernest Michael Nelson

July 30, 2015

1 Introduction

With this paper we will establish formula by the use of mathematical induction. An it will be a step by step way to solve. An hopefully it will help out the reader

2 Formula

We are given the formula

$$
\sum_{n=1}^{\infty} i=\frac{n(n+1)}{2}, \forall n \geq 1
$$

And n is element of the positive integers.

3 Proof

We began by running off a few tern to aid us in seeing a pattern emerge in the formula.

$$
\sum_{n=1}^{\infty} 1+2+3+4+5+\cdot+n=\frac{n(n+1)}{2}
$$

4 Initial Step

Let's assume that $\mathrm{n}=1$,

$$
\begin{gathered}
1=\frac{1(1+1)}{2}=1 \\
1=\frac{2}{2}=1
\end{gathered}
$$

Next we assume that $\mathrm{n}=\mathrm{k}$ and k is an element of the positive integers. And we denote it as equation 1.

$$
\begin{equation*}
\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k=\frac{k(k+1)}{2} \tag{1}
\end{equation*}
$$

$$
\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k=\frac{k(k+1)}{2}
$$

Now we do $\mathrm{k}+1$ step and use equation 1 to help us solve the proof.

$$
\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k+k+1=\frac{(k+1)((k+1)+1)}{2}
$$

To aid us in seeing the proof we will simplify the right hand side (RHS) of the equation.

$$
\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}
$$

From (1) we will use in the Induction hypothesis t o prove the formula.

$$
\frac{k(k+1)}{2}+k+1=\frac{(k+1)(k+2)}{2}
$$

The next step we do is find the greatest common factor (GCF) on the left hand side (LHS).

$$
\frac{k(k+1)}{2}+\frac{2(k+1)}{2}=\frac{(k+1)(k+2)}{2}
$$

Now we can combine the (LHS) of the equation since we have the same denominator.

$$
\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}
$$

Next we factor the equation on the (LHS).

$$
\frac{k^{2}+k+2 k+2}{2}=\frac{(k+1)(k+2)}{2}
$$

Combine like terms on the (LHS).

$$
\frac{k^{2}+3 k+2}{2}=\frac{(k+1)(k+2)}{2}
$$

Final we factor the equation on the (LHS) and we will be done.

$$
\frac{(k+1)(k+2)}{2}=\frac{(k+1)(k+2)}{2}
$$

Thus we achieved what we desiredi

