# Riemann Rearrangement Thoerem and Proof 

David Klapheck

August 3, 2017

## Riemann Rearrangement Theorem:

Given a conditionally convergent real series

$$
\sum_{n=1}^{\infty} a_{n}
$$

and a value $M \in \mathbb{R}$, there exists a rearrangement of the series such that $\sum a_{\sigma(n)}=M$.
Proof. Given $\sum a_{n}$ is conditionally convergent, $\sum\left|a_{n}\right|=\infty$.
Define subsequences ${ }^{1}\left(a_{n_{j}}\right)_{n_{j} \in A}$ and $\left(a_{n_{k}}\right)_{n_{k} \in B}$ of $a_{n}$ by $i \in A \Leftrightarrow a_{i}<0$ and $i \in B \Leftrightarrow a_{i} \geq 0$.
Claim: $\sum_{j=1}^{\infty} a_{n_{j}}=-\infty$ and $\sum_{k=1}^{\infty} a_{n_{k}}=\infty$. Suppose both series converge. Then by series addition $\sum\left|a_{n}\right|=\sum_{k=1}^{\infty} a_{n_{k}}-\sum_{j=1}^{\infty} a_{n_{j}}$ converges. A contradiction. Suppose one series converges and the other series diverges. Then $\sum_{k=1}^{\infty} a_{n_{k}}+\sum_{j=1}^{\infty} a_{n_{j}}=\sum a_{n}$ diverges. Another contradiction.

Now for the construction of permutation $\sigma$ of $\mathbb{N}$. Let $j_{1}$ be the smallest $\mathbb{N}$ such that

$$
\sum_{j=1}^{j_{1}} a_{n_{j}}<M
$$

Define $\sigma(j)=n_{j} \in A, \forall j \in\left[1 . . j_{1}\right] .{ }^{2}$ Let $k_{1}$ be the smallest $\mathbb{N}$ such that

$$
\sum_{j=1}^{j_{1}} a_{n_{j}}+\sum_{k=1}^{k_{1}} a_{n_{k}}>M
$$

Define $\sigma\left(j_{1}+k\right)=n_{k} \in B, \forall k \in\left[1 . . k_{1}\right]$.
Step 2: Let $j_{2}$ be the smallest $\mathbb{N}$ such that

$$
\sum_{j=1}^{j_{2}} a_{n_{j}}+\sum_{k=1}^{k_{1}} a_{n_{k}}<M
$$

Define $\sigma\left(j+k_{1}\right)=n_{j} \in A, \forall j \in\left(j_{1} . . j_{2}\right]$. Let $k_{2}$ be the smallest $\mathbb{N}$ such that

$$
\sum_{j=1}^{j_{2}} a_{n_{j}}+\sum_{k=1}^{k_{2}} a_{n_{k}}>M
$$

[^0]Define $\sigma\left(j_{2}+k\right)=n_{k} \in B, \forall k \in\left(k_{1} . . k_{2}\right]$.
Continue defining $\sigma$ as above and it will be a permutation of $\mathbb{N}$ such that the series rearrangement $\sum a_{\sigma(n)}$ will continue to oscillate around $M$. First by summing, in order, the negative terms from the sequence $\left(a_{n}\right)$ until the last negative term drops it below $M$. Then by adding to the sum, in order, from the non-negative terms of sequence $\left(a_{n}\right)$ until the last term pushes is over $M$.

Let $\varepsilon>0$. By the divergence test $\left|a_{n}\right| \rightarrow 0$. Thus $\exists N \in \mathbb{N}$ such that $\forall n \geq N\left|a_{n}\right|<\varepsilon$. Now $\exists i \in \mathbb{N}$ such that $j_{i}+k_{i}>N$. Then since

$$
\sum_{j=1}^{j_{i}} a_{n_{j}}+\sum_{k=1}^{k_{i}} a_{n_{k}}>M \geq \sum_{j=1}^{j_{i}} a_{n_{j}}+\sum_{k=1}^{k_{i}-1} a_{n_{k}}
$$

we have $\forall p \geq j_{i}+k_{i},\left|M-\sum_{n=1}^{p} a_{\sigma(n)}\right|<\varepsilon$. Therefore $\sum a_{\sigma(n)}=M$.


[^0]:    ${ }^{1}$ Is there a less cumbersome way to define these subsequences?
    ${ }^{2}$ Here the notation [a..b] refers to all the integers from a through b. Also (a..b) is the set of all integers between a and b .

