
”Python Technology”
A

Industrial Training Project

Submitted

in partial fulfillment

for the award of the Degree of

Bachelor of Technology

in Department of Computer Science & Engineering
(With specialization in Computer Science & Engineering)

Submitted to: Submitted By:
Mr. Shashi Kant Prachi Khandelwal
Assistant Prof.(CSE) 17EMCCS076

Department of Computer Science & Engineering
Modern Institute of Technology & Research Centre

Rajasthan Technical University , Kota
October,2019

ii

Acknowledgement

I would like to express my deepest appreciation to all those who
provided me the possibility to complete this report. A special
gratitude I give to our Prof. S.K Sharma of MITRC, Alwar .
Whose contribution in stimulating suggestions and
encouragement, helped me to coordinate my project especially
in writing this report.

Furthermore I would also like to acknowledge with much
appreciation the crucial role of Mr. Manish Kumar Mukhijia,
for creating constant push to move forward who gave the
permission to use all required equipment and the necessary
materials to complete the task and I am also grateful to our
HOD-CSE Mr. Arvind Sharma for the prompt and very
valuable support to necessary infrastructure required for the
project work.

Last but not least, many thanks go to the head of the
project,Mr. Shashikant who have invested his full effort in
guiding the team in achieving the goal. I have to appreciate the
guidance given by other supervisor as well as the panels
especially in our project presentation that has improved our
presentation skills thanks to their comment and advice.

Thank you
Prachi Khandelwal

iii

Abstract

Python Technology

With the advent of Information Technology in the last decade,
the major focus has shifted from manual systems to
computerised systems. Now this time is the era of connecting
people’s from one place to another ,so that they can share their
ideas , interest of knowledge and can help in grooming of other
person . My ” Tech Blog Website” is an online platform to do
such things here people can share their ideas regarding the
technical trends and science emergencing world .I have
developed this website using Python , Django and Javascript as
backend and Sql for data structure. HTML, CSS and Bootstrap
for Frontend.

iv

Contents

Certificate ii

Acknowledgement iii

Abstract iv

1 Python Introduction 1
1.1 What is Python ? 1
1.2 What can Python do? 1
1.3 Why Python? . 2
1.4 Python Enviroment Setup 2

2 Python Syntax 4
2.1 Python Indentation 4
2.2 Python Variables 4
2.3 Comments . 5
2.4 Reserved Keyword 5

3 Python Data Types 6
3.1 Built-in Data Types 6

4 Python Numbers 7
4.1 Numbers . 7

4.1.1 Int . 8
4.1.2 Float . 8
4.1.3 Complex 9

v

4.2 Type Conversion 9
4.3 Random Number 10

5 Python Casting 11
5.1 Specify a Variable Type 11

6 Python Strings 12
6.1 String Literals . 12
6.2 Strings are Arrays 12
6.3 Slicing . 13
6.4 Negative Indexing 13
6.5 String Length . 13
6.6 String Methods 13

6.6.1 Strip . 14
6.6.2 Lower . 14
6.6.3 Upper . 14
6.6.4 Concatenation 14

6.7 Methods . 15

7 Python Operators 16
7.1 Arithmetic Opertaors 16
7.2 Assignment Operators 17
7.3 Comparison Operators 17
7.4 Logical Operators 18
7.5 Bitwise Operators 18

8 Python Lists 19
8.1 Python Collections (Arrays) 19
8.2 List . 20

8.2.1 Negative Indexing 20
8.2.2 Loop Through a List 20
8.2.3 List Length 20

8.3 List Methods . 21

vi

9 Python Tuples 22
9.1 Tuple . 22

9.1.1 Access tuple Items 22
9.1.2 Negetive Indexing 23
9.1.3 Range Of Indexes 23

10 Python Sets 24
10.1 Set . 24

10.1.1 Access Items 24
10.1.2 Add Items 25

10.2 Set Methods . 25

11 Python Dictionaries 26
11.1 Dictionary . 26

11.1.1 Accessing Items 26
11.1.2 Loop Through a Dictionary 27
11.1.3 Adding Items 27
11.1.4 Removing Items 27
11.1.5 Copy a Dictionary 28
11.1.6 Nested Dictionary 28

11.2 Dictionary Methods 28

12 Python If ... Else 30
12.0.1 Python Conditions and If statements . . . 30
12.0.2 Elif . 31
12.0.3 Else . 32

13 Python Loops 33
13.1 The while Loop 33
13.2 The break Statement 35
13.3 For Loops . 35

14 Python Functions 37
14.1 Defining a Function 37

vii

14.2 Recursion . 38

15 Python Classes and Object 39
15.1 Class . 39
15.2 Class Object . 40

16 Inheritance 41

17 OOP’s Terminology 43

18 Python Module 45
18.0.1 Module Search Path 46
18.0.2 Built-in Module 46

19 DJANGO -Basics 48
19.1 History Of Django 48
19.2 Advanatges of Django 48
19.3 Django-Enviroment 49
19.4 Creating Models 50

Bibliography 52

viii

List of Figures

3.1 Builtin Datatype 6

6.1 Built-in methods 15

12.1 If Condition . 31
12.2 If-Else Condition 32

13.1 While Loop . 34
13.2 Break . 35
13.3 For Loops . 36

19.1 Django WebServer 51

ix

List of Tables

2.1 Reserved Keyword 5

7.1 Arithmetic Operators 17
7.2 Assignment Operator 17
7.3 Comparison Operators 17
7.4 Logical Operators 18
7.5 Bitwise Operators 18

8.1 List Method . 21

10.1 Set Methods . 25

11.1 Dictionary Methods 29

x

Chapter 1

Python Introduction

1.1 What is Python ?

Python is a popular programming language. It was created by
Guido van Rossum, and released in 1991.
It is used for

• web development (server-side)

• software development

• mathematics

• system scripting

1.2 What can Python do?

• Python can be used on a server to create web applications.

• Python can be used alongside software to create workflows.

• Python can connect to database systems. It can also read
and modify files.

• Python can be used to handle big data and perform
complex mathematics.

1

• Python can be used for rapid prototyping, or for
production-ready software development.

1.3 Why Python?

• Python works on different platforms (Windows, Mac,
Linux, Raspberry Pi, etc).

• Python has a simple syntax similar to the English language.

• Python has syntax that allows developers to write
programs with fewer lines than some other programming
languages.

• Python runs on an interpreter system, meaning that code
can be executed as soon as it is written. This means that
prototyping can be very quick.

• Python can be treated in a procedural way, an
object-orientated way or a functional way.

1.4 Python Enviroment Setup

We have set up the Python Programming environment online,
so that you can compile and execute all the available examples
online. It will give you the confidence in what you are reading
and will enable you to verify the programs with different
options. Feel free to modify any example and execute it online.
Try the following example using our online compiler available at
Coding Ground

/user/bin/python3/print(”Hello, Python!”)
For most of the examples given in this tutorial, you will find a
Try it option on our website code sections, at the top right

2

corner that will take you to the online compiler. Just use it and
enjoy your learning.
Python 3 is available for Windows, Mac OS and most of the
flavors of Linux operating system. Even though Python 2 is
available for many other OSs, Python 3 support either has not
been made available for them or has been dropped

3

Chapter 2

Python Syntax

2.1 Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code
is for readability only, the indentation in Python is very
important.

Python uses indentation to indicate a block of code.

Example
if 5 > 2 : print(”Five is greater than two!”)

2.2 Python Variables

In Python variables are created the moment you assign a value
to it:

Python has no command for declaring a variable.

4

2.3 Comments

Python has commenting capability for the purpose of in-code
documentation.
Comments start with a # and Python will render the
rest of the line as a comment:

2.4 Reserved Keyword

and assert in
del else raise

from if continue
not pass finally

while yield is
as break return
elif except def

global import for
or print lambda

with class try
exec

Table 2.1: Reserved Keyword

5

Chapter 3

Python Data Types

3.1 Built-in Data Types

In programming, data type is an important concept.
Variables can store data of different types, and different types
can do different things.
Python has the following data types built-in by default, in these
categories:

Figure 3.1: Builtin Datatype

6

Chapter 4

Python Numbers

4.1 Numbers

There are three numeric types in Python:

• int

• float

• complex

Variables of numeric types are created when you assign a value
to them:

To verify the type of any object in Python, use the type()
function:

7

4.1.1 Int

Int, or integer, is a whole number, positive or negative, without
decimals, of unlimited length.

4.1.2 Float

Float, or ”floating point number” is a number, positive or
negative, containing one or more decimals.

8

4.1.3 Complex

Complex numbers are written with a ”j” as the imaginary part:

4.2 Type Conversion

You can convert from one type to another with the int(), float(),
and complex() methods:

9

4.3 Random Number

Python does not have a random() function to make a random
number, but Python has a built-in module called random that
can be used to make random numbers:

10

Chapter 5

Python Casting

5.1 Specify a Variable Type

There may be times when you want to specify a type on to a
variable. This can be done with casting. Python is an
object-orientated language, and as such it uses classes to define
data types, including its primitive types.
Casting in python is therefore done using constructor functions:

• int() - constructs an integer number from an
integer literal, a float literal (by rounding down to
the previous whole number), or a string literal
(providing the string represents a whole number)

• float() - constructs a float number from an integer
literal, a float literal or a string literal (providing
the string represents a float or an integer)

• str() - constructs a string from a wide variety of
data types, including strings, integer literals and
float literals

11

Chapter 6

Python Strings

6.1 String Literals

String literals in python are surrounded by either single
quotation marks, or double quotation marks.
’hello’ is the same as ”hello”.
You can display a string literal with the print() function:

6.2 Strings are Arrays

Like many other popular programming languages, strings in
Python are arrays of bytes representing unicode characters.
However, Python does not have a character data type, a single
character is simply a string with a length of 1.
Square brackets can be used to access elements of the string.

12

6.3 Slicing

You can return a range of characters by using the slice syntax.
Specify the start index and the end index, separated by a colon,
to return a part of the string.

6.4 Negative Indexing

Use negative indexes to start the slice from the end of the string:

6.5 String Length

To get the length of a string, use the len() function.

6.6 String Methods

Python has a set of built-in methods that you can use on
strings.

13

6.6.1 Strip

6.6.2 Lower

6.6.3 Upper

6.6.4 Concatenation

14

6.7 Methods

Figure 6.1: Built-in methods

15

Chapter 7

Python Operators

Operators are used to perform operations on variables and
values.
Python divides the operators in the following groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Logical operators

• Identity operators

• Membership operators

• Bitwise operators

7.1 Arithmetic Opertaors

Arithmetic operators are used with numeric values to perform
common mathematical operations:

16

Operator Name Example
+ Addition x+y
- Subtraction x-y
* Multiplication x*y
/ Division x/y
** Exponentiation x**y

Table 7.1: Arithmetic Operators

7.2 Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example
= x=5

+= x+=3
-= x-=3
= x=3
/= x/=5

Table 7.2: Assignment Operator

7.3 Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example
== Equal x==y
!= Not equal x!=y
¿ Greater than x¿y
¡ less than x¡y

¿= Greater than or equal to x¿=y
¡= Less than or equal to x¡=y

Table 7.3: Comparison Operators

17

7.4 Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example
and Returns True if both statements are true x ¡ 5 and x ¡ 10
or Returns True if one of the statements is true x ¡ 5 or x ¡ 4
not Reverse the result, returns False if the result is true (x ¡ 5 and x ¡ 10)

Table 7.4: Logical Operators

7.5 Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Opertaor Name Description
& AND Sets each bit to 1 if both bits are 1
— OR Sets each bit to 1 if one of two bits is 1
¡¡ Zero fill left shift Shift left by pushing zeros
¿¿ Signed right shift Shift right by pushing bits fall off

Table 7.5: Bitwise Operators

18

Chapter 8

Python Lists

8.1 Python Collections (Arrays)

There are four collection data types in the Python programming
language:

• List: It is a collection which is ordered and
changeable. Allows duplicate members.

• Tuple: It is a collection which is ordered and
unchangeable. Allows duplicate members.

• Set: It is a collection which is unordered and
unindexed. No duplicate members.

• Dictionary: It is a collection which is unordered,
changeable and indexed. No duplicate members.

When choosing a collection type, it is useful to understand the
properties of that type. Choosing the right type for a particular
data set could mean retention of meaning, and, it could mean
an increase in efficiency or security.

19

8.2 List

A list is a collection which is ordered and changeable. In
Python lists are written with square brackets.

8.2.1 Negative Indexing

Negative indexing means beginning from the end, -1 refers to
the last item, -2 refers to the second last item etc.

8.2.2 Loop Through a List

You can loop through the list items by using a for loop:

8.2.3 List Length

To determine how many items a list has, use the len() method:

20

8.3 List Methods

Table 8.1: List Method

21

Chapter 9

Python Tuples

9.1 Tuple

A tuple is a collection which is ordered and unchangeable. In
Python tuples are written with round brackets.

9.1.1 Access tuple Items

You can access tuple items by referring to the index number,
inside square brackets:

22

9.1.2 Negetive Indexing

Negative indexing means beginning from the end, -1 refers to
the last item, -2 refers to the second last item etc.

9.1.3 Range Of Indexes

You can specify a range of indexes by specifying where to start
and where to end the range.
When specifying a range, the return value will be a new tuple
with the specified items.

23

Chapter 10

Python Sets

10.1 Set

A set is a collection which is unordered and unindexed. In
Python sets are written with curly brackets.

10.1.1 Access Items

You cannot access items in a set by referring to an index, since
sets are unordered the items has no index.
But you can loop through the set items using a for loop, or ask
if a specified value is present in a set, by using the in keyword.

24

10.1.2 Add Items

To add one item to a set use the add() method.
To add more than one item to a set use the update() method.

10.2 Set Methods

Python has a set of built-in methods that you can use on sets.

Table 10.1: Set Methods

25

Chapter 11

Python Dictionaries

11.1 Dictionary

A dictionary is a collection which is unordered, changeable and
indexed. In Python dictionaries are written with curly brackets,
and they have keys and values.

11.1.1 Accessing Items

You can access the items of a dictionary by referring to its key
name, inside square brackets:

26

11.1.2 Loop Through a Dictionary

You can loop through a dictionary by using a for loop.
When looping through a dictionary, the return value are the
keys of the dictionary, but there are methods to return the
values as well.

11.1.3 Adding Items

Adding an item to the dictionary is done by using a new index
key and assigning a value to it:

11.1.4 Removing Items

There are several methods to remove items from a dictionary:

27

11.1.5 Copy a Dictionary

You cannot copy a dictionary simply by typing dict2 = dict1,
because: dict2 will only be a reference to dict1, and changes
made in dict1 will automatically also be made in dict2.
There are ways to make a copy, one way is to use the built-in
Dictionary method copy().

11.1.6 Nested Dictionary

A dictionary can also contain many dictionaries, this is called
nested dictionaries.

11.2 Dictionary Methods

28

Table 11.1: Dictionary Methods

29

Chapter 12

Python If ... Else

12.0.1 Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

• Equals: a == b

• Not Equals: a != b

• Less than: a ¡ b

• Less than or equal to: a ¡= b

• Greater than: a ¿ b

• Greater than or equal to: a ¿= b

These conditions can be used in several ways, most commonly
in ”if statements” and loops.
An ”if statement” is written by using the if keyword.

30

Figure 12.1: If Condition

In this example we use two variables, a and b, which are used as
part of the if statement to test whether b is greater than a. As
a is 33, and b is 200, we know that 200 is greater than 33, and
so we print to screen that ”b is greater than a”.

12.0.2 Elif

The elif keyword is pythons way of saying ”if the previous
conditions were not true, then try this condition”.

In this example a is equal to b, so the first condition is not true,

31

Figure 12.2: If-Else Condition

but the elif condition is true, so we print to screen that ”a and b
are equal”.

12.0.3 Else

The else keyword catches anything which isn’t caught by the
preceding conditions.

In this example a is greater than b, so the first condition is not
true, also the elif condition is not true

32

Chapter 13

Python Loops

Python has two primitive loop commands:

• While Loops

• For Loops

13.1 The while Loop

Here, statement(s) may be a single statement or a block of
statements with uniform indent. The condition may be any
expression, and true is any non-zero value.
The loop iterates while the condition is true. Python, all the
statements indented by the same number of character spaces
after a programming construct are considered to be part of a
single block of code. Python uses indentation as its method of
grouping statements.

33

Figure 13.1: While Loop

34

Figure 13.2: Break

13.2 The break Statement

The break statement is used for premature termination of the
current loop. After abandoning the loop, execution at the next
statement is resumed, just like the traditional break statement
in C.
The most common use of break is when some external condition
is triggered requiring a hasty exit from a loop. The break
statement can be used in both while and for loops.

13.3 For Loops

A for loop is used for iterating over a sequence (that is either a
list, a tuple, a dictionary, a set, or a string).
This is less like the for keyword in other programming

35

Figure 13.3: For Loops

languages, and works more like an iterator method as found in
other object-orientated programming languages.
With the for loop we can execute a set of statements, once for
each item in a list, tuple, set etc.

36

Chapter 14

Python Functions

A function is a block of organized, reusable code that is used to
perform a single, related action. Functions provide better
modularity for your application and a high degree of code
reusing.
As you already know, Python gives you many built-in functions
like print(), etc. but you can also create your own functions.
These functions are called user-defined functions.

14.1 Defining a Function

You can define functions to provide the required functionality.
Here are simple rules to define a function in Python.

• Function blocks begin with the keyword def followed by the
function name and parentheses (()).

• Any input parameters or arguments should be placed
within these parentheses. You can also define parameters
inside these parentheses.

• The first statement of a function can be an optional
statement - the documentation string of the function or
docstring.

37

• The code block within every function starts with a colon (:)
and is indented.

• The statement return [expression] exits a function,
optionally passing back an expression to the caller. A
return statement with no arguments is the same as return
None.

14.2 Recursion

Python also accepts function recursion, which means a defined
function can call itself.
Recursion is a common mathematical and programming concept.
It means that a function calls itself. This has the benefit of
meaning that you can loop through data to reach a result.
The developer should be very careful with recursion as it can be
quite easy to slip into writing a function which never terminates,
or one that uses excess amounts of memory or processor power.
However, when written correctly recursion can be a very
efficient and mathematically-elegant approach to programming.
In this example is a function that we have defined to call itself
(”recurse”). We use the k variable as the data, which
decrements (-1) every time we recurse. The recursion ends when
the condition is not greater than 0 (i.e. when it is 0).
To a new developer it can take some time to work out how
exactly this works, best way to find out is by testing and
modifying it.

38

Chapter 15

Python Classes and Object

15.1 Class

Compared with other programming languages, Python’s class
mechanism adds classes with a minimum of new syntax and
semantics. It is a mixture of the class mechanisms found in
C++ and Modula-3. Python classes provide all the standard
features of Object Oriented Programming: the class inheritance
mechanism allows multiple base classes, a derived class can
override any methods of its base class or classes, and a method
can call the method of a base class with the same name.
Objects can contain arbitrary amounts and kinds of data. As is
true for modules, classes partake of the dynamic nature of
Python: they are created at runtime, and can be modified
further after creation.
In C++ terminology, normally class members (including the
data members) are public (except see below Private Variables),
and all member functions are virtual. As in Modula-3, there are
no shorthands for referencing the object’s members from its
methods: the method function is declared with an explicit first
argument representing the object, which is provided implicitly
by the call. As in Smalltalk, classes themselves are objects.
This provides semantics for importing and renaming. Unlike

39

C++ and Modula-3, built-in types can be used as base classes
for extension by the user. Also, like in C++, most built-in
operators with special syntax (arithmetic operators,
subscripting etc.) can be redefined for class instances.
(Lacking universally accepted terminology to talk about classes,
I will make occasional use of Smalltalk and C++ terms. I would
use Modula-3 terms, since its object-oriented semantics are
closer to those of Python than C++, but I expect that few
readers have heard of it.)

15.2 Class Object

Class objects support two kinds of operations: attribute
references and instantiation.
Attribute references use the standard syntax used for all
attribute references in Python: obj.name. Valid attribute names
are all the names that were in the class’s namespace when the
class object was created. So, if the class definition looked like
this:

40

Chapter 16

Inheritance

Inheritance allows us to define a class that inherits all the
methods and properties from another class.
Parent class is the class being inherited from, also called base
class.
Child class is the class that inherits from another class, also
called derived class.
The name BaseClassName must be defined in a scope containing
the derived class definition. In place of a base class name, other
arbitrary expressions are also allowed. This can be useful, for
example, when the base class is defined in another module:

Execution of a derived class definition proceeds the same as for
a base class. When the class object is constructed, the base
class is remembered. This is used for resolving attribute
references: if a requested attribute is not found in the class, the
search proceeds to look in the base class. This rule is applied
recursively if the base class itself is derived from some other
class.
There’s nothing special about instantiation of derived classes:
DerivedClassName() creates a new instance of the class.
Method references are resolved as follows: the corresponding
class attribute is searched, descending down the chain of base

41

classes if necessary, and the method reference is valid if this
yields a function object.
Derived classes may override methods of their base classes.
Because methods have no special privileges when calling other
methods of the same object, a method of a base class that calls
another method defined in the same base class may end up
calling a method of a derived class that overrides it. (For C++
programmers: all methods in Python are effectively virtual.)
An overriding method in a derived class may in fact want to
extend rather than simply replace the base class method of the
same name. There is a simple way to call the base class method
directly: just call BaseClassName.methodname(self, arguments).
This is occasionally useful to clients as well. (Note that this
only works if the base class is accessible as BaseClassName in
the global scope.)

42

Chapter 17

OOP’s Terminology

• Class : A user-defined prototype for an object
that defines a set of attributes that characterize
any object of the class. The attributes are data
members (class variables and instance variables)
and methods, accessed via dot notation.

• Class Variable : A variable that is shared by all
instances of a class. Class variables are defined
within a class but outside any of the class’s
methods. Class variables are not used as
frequently as instance variables are.

• Data Member : A class variable or instance
variable that holds data associated with a class
and its objects.

• Function overloading : The assignment of more
than one behavior to a particular function. The
operation performed varies by the types of objects
or arguments involved.

• Instance Variable : A variable that is defined
inside a method and belongs only to the current
instance of a class.

43

• Inheritance : The transfer of the characteristics of
a class to other classes that are derived from it.

• Object : A unique instance of a data structure
that is defined by its class. An object comprises
both data members (class variables and instance
variables) and methods.

44

Chapter 18

Python Module

If you quit from the Python interpreter and enter it again, the
definitions you have made (functions and variables) are lost.
Therefore, if you want to write a somewhat longer program, you
are better off using a text editor to prepare the input for the
interpreter and running it with that file as input instead. This
is known as creating a script. As your program gets longer, you
may want to split it into several files for easier maintenance.
You may also want to use a handy function that you’ve written
in several programs without copying its definition into each
program.
To support this, Python has a way to put definitions in a file
and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a
module can be imported into other modules or into the main
module (the collection of variables that you have access to in a
script executed at the top level and in calculator mode).

45

18.0.1 Module Search Path

When a module named spam is imported, the interpreter first
searches for a built-in module with that name. If not found, it
then searches for a file named spam.py in a list of directories
given by the variable sys.path. sys.path is initialized from these
locations:
the directory containing the input script (or the current
directory). PYTHONPATH (a list of directory names, with the
same syntax as the shell variable PATH). the
installation-dependent default.
After initialization, Python programs can modify sys.path. The
directory containing the script being run is placed at the
beginning of the search path, ahead of the standard library path.
This means that scripts in that directory will be loaded instead
of modules of the same name in the library directory. This is an
error unless the replacement is intended. See section Standard
Modules for more information.

18.0.2 Built-in Module

Python comes with a library of standard modules, described in
a separate document, the Python Library Reference (“Library
Reference” hereafter). Some modules are built into the
interpreter; these provide access to operations that are not part
of the core of the language but are nevertheless built in, either
for efficiency or to provide access to operating system primitives
such as system calls. The set of such modules is a configuration
option which also depends on the underlying platform. For
example, the winreg module is only provided on Windows
systems. One particular module deserves some attention: sys,
which is built into every Python interpreter. The variables
sys.ps1 and sys.ps2 define the strings used as primary and
secondary prompts:

46

Each module has its own private symbol table, which is used as
the global symbol table by all functions defined in the module.
Thus, the author of a module can use global variables in the
module without worrying about accidental clashes with a user’s
global variables. On the other hand, if you know what you are
doing you can touch a module’s global variables with the same
notation used to refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not
required to place all import statements at the beginning of a
module (or script, for that matter). The imported module
names are placed in the importing module’s global symbol table.

There is a variant of the import statement that imports names
from a module directly into the importing module’s symbol
table.

47

Chapter 19

DJANGO -Basics

Django is a high-level Python web framework that encourages
rapid development and clean, pragmatic design. Django makes
it easier to build better web apps quickly and with less code.

19.1 History Of Django

• 2003 : Started by Adrian Holovaty and Simon
Willison as an internal project at the Lawrence
Journal-World newspaper

• 2005 : Released July 2005 and named it Django,
after the jazz guitarist Django Reinhardt.

• 2005 : Mature enough to handle several
high-traffic sites.

• Current : Django is now an open source project
with contributors across the world

19.2 Advanatges of Django

Here are few advantages of using Django which can be listed out
here

48

• Django provides a bridge between the data model and the
database engine, and supports a large set of database
systems including MySQL, Oracle, Postgres, etc. Django
also supports NoSQL database through Django-nonrel fork.
For now, the only NoSQL databases supported are
MongoDB and google app engine.

• Django supports multilingual websites through its built-in
internationalization system. So you can develop your
website, which would support multiple languages.

• Django has built-in support for Ajax, RSS, Caching and
various other frameworks.

• Django provides a nice ready-to-use user interface for
administrative activities.

• Django comes with a lightweight web server to facilitate
end-to-end application development and testing .

19.3 Django-Enviroment

Django development environment consists of installing and
setting up Python, Django, and a Database System. Since
Django deals with web application, it’s worth mentioning that
you would need a web server setup as well.
Django is written in 100 percent pure Python code, so you’ll
need to install Python on your system. Latest Django version
requires Python 2.6.5 or higher for the 2.6.x branch or higher
than 2.7.3 for the 2.7.x branch.
If you’re on one of the latest Linux or Mac OS X distribution,
you probably already have Python installed. You can verify it
by typing python command at a command prompt. If you see
something like this, then Python is installed.

49

Installing Django is very easy, but the steps required for its
installation depends on your operating system. Since Python is
a platform-independent language, Django has one package that
works everywhere regardless of your operating system. You can
download the latest version of Django from the link
http://www.djangoproject.com/download.
Django supports several major database engines and you can set
up any of them based on your comfort.

• MySQL (http://www.mysql.com/)

• PostgreSQL (http://www.postgresql.org/)

• SQLite 3 (http://www.sqlite.org/)

• MongoDb
(https://django-mongodb-engine.readthedocs.org)

Django comes with a lightweight web server for developing and
testing applications. This server is pre-configured to work with
Django, and more importantly, it restarts whenever you modify
the code.
However, Django does support Apache and other popular web
servers such as Lighttpd. We will discuss both the approaches
in coming chapters while working with different examples.

19.4 Creating Models

A model is the single, definitive source of truth about your data.
It contains the essential fields and behaviors of the data you’re
storing. Django follows the DRY Principle. The goal is to define
your data model in one place and automatically derive things
from it.
This includes the migrations - unlike in Ruby On Rails, for
example, migrations are entirely derived from your models file,

50

Figure 19.1: Django WebServer

and are essentially just a history that Django can roll through
to update your database schema to match your current models.

51

Bibliography

[1] W3School The LATEX Companion. Addison-Wesley, Reading,
Massachusetts, 1993.

[2] Python Documentation

52

