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One may be familiar with the fact that the gamma function of s, I'(s) for
non-negative real numbers is defined by the integral:
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But how can one prove this statement? There are quite a few ways to do so,

but here is an example of one. One can try integrating by parts the integral
before by setting u = e%, and dv = z°~!. From that one gets du = —ﬁ with
logarithmic differentiation by

xr

y=c
Iny =—xzlne
and since Ine =1,
Iny=—xz
differentiate both sides,
d d
=1 - 2 (—
= (Iny) = - (~)
1d
ldy
y dx
and multiply both sides by function y,
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To integrate x5!, apply the power rule for integration
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and substitute s + 1 for n to get
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The factor of % can be pulled out from the integral to get
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One can integrate by parts once more, by setting u = e%, and dv = z°. It has

been proven earlier that %(e%) = —e% = du To integrate x°, apply the same
power rule for integration
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When substituted into the equation before, one has
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or when simplified,
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There seems to be a pattern, resembling a sum, but before making final con-
clusions it is better to integrate by parts one more time by setting u = P%, and
dv = x°. Again, it has been proven earlier that d%(%) = fﬁ = du To integrate
2°T1, apply the power rule for integration
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In result,

or simply

and substitute s for n,

and substitute s + 1 for n,




Substituting into the previous equation and simplifying further, one gets
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There are a couple details to be noted here, for instance the increasing integer
value that is added to exponent s of = that correlates with the nt" term in the
sum minus one. In the denominator, e” is a common factor, but the rest can be
expressed as a partial product that depends on the index quantity of the infinite
sum. Putting everything together, one can express the gamma function I'(s) as

o0
oo
xs—&-n

e [Z T oo+ m)

Since the infinite sum has external factors x® and e®, they can be pulled out of
the sum, such that our equation looks like this:
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The partial product in the denominator of the sum
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can be rewritten as
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The Pochhamer rising factorial function z(™ can be defined as
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If x is substituted by s + 1, one gets
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and so from there it can be derived that the term



can be written as
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Substituting into the original sum, I'(s) is expressed as
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and when % is factored out of the sum, it becomes
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The Pocchamer factorial has a property that defines it as
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and if x is substituted by s 4 1, one gets
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Plugging that in to our equation for I'(s), it becomes
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and again the external factor of I'(s 4+ 1) can be pulled out of the infinite sum
to get
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The function I'(s + 1) is equal to sI‘(s). This can be plugged in to our previous
equation to have
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The expression
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is the power series expansion for the lower incomplete gamma function (s, x).
And therefore the gamma function can be written as
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~(s,00) becomes the complete gamma function I'(s), while (s, 0) breaks down
to 0, and the equation becomes

and finally

From this it can be said that the equation
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is true.



