On Proving the Identity of the Product Integral

Ivan V. Morozov

September 2019

Let one consider the product integral

$$
\int x^{d x}-1
$$

To clarify that the integral extends over to the -1 , brackets can be put around the integrand,

$$
\int\left[x^{d x}-1\right]
$$

To solve this integral, one may consider the Riemann sum formulated as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}
$$

It can be thus stated that

$$
\lim _{n \rightarrow \infty} \Delta x=d x
$$

and that

$$
\lim _{n \rightarrow \infty} d x=0
$$

Henceforth it can be said that

$$
\lim _{\Delta x \rightarrow 0} \Delta x=d x
$$

Returning to the original integral. the integrand can be multiplied by $\frac{d x}{d x}$ such that the integral is shown by

$$
\int \frac{x^{d x}-1}{d x} d x
$$

To further simplify the problem, the following function can be taken into account,

$$
y=a^{x}
$$

with a being some arbitrary term. To differentiate this function, the natural logarithm of both sides can be taken such that

$$
\ln y=\ln \left(a^{x}\right)
$$

Using the property of the natural log function

$$
\ln \left(a^{b}\right)=b \ln a
$$

the function $\ln y=\ln \left(a^{x}\right)$ can be expressed as

$$
\ln y=x \ln a
$$

By differentiating both sides one gets

$$
\begin{gathered}
\frac{d}{d x}(\ln y)=\frac{d}{d x}(x \ln a) \\
\frac{1}{y} \frac{d y}{d x}=\ln a
\end{gathered}
$$

Multiple both sides by y,

$$
\frac{d y}{d x}=a^{x} \ln a
$$

Derivatives are also defined by the difference quotient represented as

$$
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

or also

$$
\frac{d}{d x} f(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Applying this to $f(x)=a^{x}$, one gets

$$
\frac{d}{d x} a^{x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}
$$

a^{x} can be then factored and pulled out of the limit,

$$
\frac{d}{d x} a^{x}=a^{x} \lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}
$$

As stated before, $\lim _{n \rightarrow \infty} \Delta x=d x$, and thus

$$
\frac{d}{d x} a^{x}=a^{x} \frac{a^{d x}-1}{d x}
$$

Since it has been proved that

$$
\frac{d}{d x} a^{x}=a^{x} \ln a
$$

one can set the two derivatives equal, such that

$$
a^{x} \ln a=a^{x} \frac{a^{d x}-1}{d x}
$$

Divide both sides by a^{x},

$$
\ln a=\frac{a^{d x}-1}{d x}
$$

If a is substituted with x, one is left with

$$
\ln x=\frac{x^{d x}-1}{d x}
$$

This is the integrand from the product integral $\int \frac{x^{x x}-1}{d x} d x$. By plugging this into the integral, it can be stated that

$$
\int \frac{x^{d x}-1}{d x} d x=\int \ln x d x
$$

and thus

$$
\int x^{d x}-1=\int \ln x d x
$$

All that is left now is integration by parts. The following substitutions can be set,

$$
\begin{aligned}
u & =\ln x \\
d v & =1 d x
\end{aligned}
$$

The derivative of the natural logarithm of x is $\frac{1}{x}$, and the integral of $1 d x$ is x, so therefore

$$
\begin{aligned}
d u & =\frac{1}{x} \\
v & =x
\end{aligned}
$$

This can be substituted for integration by parts, and the integral can now be represented as

$$
\begin{aligned}
& \int \ln x d x=x \ln x-\int \frac{x}{x} d x \\
& \int \ln x d x=x \ln x-\int 1 d x
\end{aligned}
$$

The integral of $1 d x$ is once again x,

$$
\int \ln x d x=x \ln x-x
$$

Therefore, it has been proved that

$$
\int x^{d x}-1=x \ln x-x
$$

