
Neural Network. Basic to application
(painting style transfer)

Kim Woo Hyun

September 4, 2019

Kim Woo Hyun Seminar September 4, 2019 1 / 42



Outline

1 Neural Network
First Generation (ANN, Perceptron)
Second Generation (MLP, Back-propagation)
Thrid Generation (ReLU)

2 Convolutional Neural Network
Convolution layer
ReLU layer
Pooling layer
Fully Connected layer

3 Painting Style Transfer
VGGnet
Algorithm and Loss function
Result

Kim Woo Hyun Seminar September 4, 2019 2 / 42



First Generation

Artificial Neural Network : ANN

At 1943 McCulloch, Warren S., and Walter Pitts suggested

Mimic the human neural structure by connecting switches

Kim Woo Hyun Seminar September 4, 2019 3 / 42



First Generation

Perceptron

In 1958 Frank Rosenblatt suggested Linear Classifier.

Expected computer can do things human can do better at that
time.

Basic structure is not changed until now.

Using sigmoid with Activation function. (Make output ∈ [0,1])

Kim Woo Hyun Seminar September 4, 2019 4 / 42



First Generation

Problem

In 1969 Marvin Minsky, Seymour Papert proved limitations of
perceptron.

It can’t solve XOR problem even.

Kim Woo Hyun Seminar September 4, 2019 5 / 42



Second Generation

Multi-Layer Perception : MLP

Make neurons deeper by make hidden layers of perception

Solve the Non-Linear problems with multiple linear classifier.

Too many parameters!!

Needs parameter controller.

Kim Woo Hyun Seminar September 4, 2019 6 / 42



Second Generation

Back-propagation

Feedback algorithm controls the weights of neural network.

i : input layer

h : hidden layer

o : output layer

wij : weight connected to the neuron i to j.

Kim Woo Hyun Seminar September 4, 2019 7 / 42



Second Generation

out : Output value of a neuron.

in : sum of weighted output of connected neurons.
(in =

∑
w ∗ out)

t : Target value (Choose yourself!)

Sigmoid activation function. Ex) outh3 = σ(inh3) = 1
1+e−inh3

Kim Woo Hyun Seminar September 4, 2019 8 / 42



Second Generation

Error with Sum of square (Euclidean Distance)

E =
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

We want to see how much each weights influence to E ⇒ Calculate ∂E
∂wij

Example) Calculate ∂E
∂w35

with Chain-rule

∂E

∂w35
=

∂E

∂outo5
∗ ∂outo5
∂ino5

∗ ∂ino5
∂w35

Kim Woo Hyun Seminar September 4, 2019 9 / 42



Second Generation

First,

∂E

∂outo5
=

∂

∂outo5

[
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

]
= outo5 − t5

Second,
∂out05
∂ino5

=
∂σ(ino5)

∂ino5

Kim Woo Hyun Seminar September 4, 2019 10 / 42



Second Generation

The sigmoid function σ(x) is

σ(x) =
1

1 + e−ax

The differential of sigmoid σ(x)

σ′(x) =
ae−ax

(1 + e−ax)2

= a
1

(1 + e−ax)

e−ax

(1 + e−ax)

= a
1

(1 + e−ax)

(
1− 1

(1 + e−ax)

)
= aσ(x)(1− σ(x))

Kim Woo Hyun Seminar September 4, 2019 11 / 42



Second Generation

First,

∂E

∂outo5
=

∂

∂outo5

[
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

]
= outo5 − t5

Second,

∂out05
∂ino5

=
∂σ(ino5)

∂ino5
= σ(ino5)(1− σ(ino5)) = outo5(1− outo5)

Kim Woo Hyun Seminar September 4, 2019 12 / 42



Second Generation

First,

∂E

∂outo5
=

∂

∂outo5

[
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

]
= outo5 − t5

Second,

∂out05
∂ino5

=
∂σ(ino5)

∂ino5
= σ(ino5)(1− σ(ino5)) = outo5(1− outo5)

Third,
∂ino5
∂w35

=
∂(outh3 ∗ w35)

∂w35
= outh3

Finally,
∂E

∂w35
= (outo5 − t5)(1− outo5)outo5outh3

Beautifully, all parameters are already calculated and what we have to
do is easy math.

Kim Woo Hyun Seminar September 4, 2019 13 / 42



Second Generation

Then, how to update weights?

w := w − r∂E
∂w

, r is constant called learning rate.

So, updated w35 is

w35 := w35 − r(outo5 − t5)(1− outo5)outo5outh3

This method called Gradient descent.

Kim Woo Hyun Seminar September 4, 2019 14 / 42



Second Generation

Gradient descent

Simply, moving to orthogonal direction from contour line.

Why the direction to orthogonal? At minimum point of f(x,y),

∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
= 0

Assume direction of contour line is (a, b). Then using Tayler series,
derive orthogonal direction by linearize the contour line.

f(x1 + a, y1 + b) ' f(x1, y2) +
∂f

∂x
a+

∂f

∂y
b+ . . .

The condition of (a, b) that minimize error is

∂f

∂x
a+

∂f

∂y
b = 0

Kim Woo Hyun Seminar September 4, 2019 15 / 42



Second Generation

If a = ∂f
∂y and b = −∂f

∂x .

∂f

∂x
a+

∂f

∂y
b =

∂f

∂x

∂f

∂y
+
∂f

∂y
(−∂f
∂x

) = 0

In addition, the inner product of gradient and (a,b) is

(∇f(x, y)) · (a, b) =

(
∂f

∂x
,
∂f

∂y

)
·
(
∂f

∂y
,−∂f

∂x

)
= 0

It means the vector orthogonal to contour line is gradient itself. And if
we track the gradient until it is 0, we can find minimum point.

*Caution it can be a saddle point not minimum but I don’t want to
discuss in this time because I don’t know.

Kim Woo Hyun Seminar September 4, 2019 16 / 42



Second Generation

Problems

Gradient descent is bad at non-convex function, but sigmoid is
non-convex function.

σ′′(x) = a2σ(x)(1− σ(x))(1− 2σ(x))

a2σ(x)(1− σ(x)) ≥ 0 but − 1 ≤ 1− 2σ(x) ≤ 1

Cost of back-propagation is Big.

Vanishing Gradient Problem.

Kim Woo Hyun Seminar September 4, 2019 17 / 42



Second Generation

Cost of back-propagation.

Cost is big at shallow layer.

For example,
∂E

∂w13
=

∂E

∂outh3
∗ ∂outh3
∂inh3

∗ ∂inh3
∂w13

...

= [(outo5 − t5){outo5(1− outo5)}w35 + (outo5 − t5){outo6(1− outo6)}w36]

∗(1− outh3) ∗ outh3 ∗ outi1
Of course! since it is chain-rule algorithm, it is easier than looks like.
However if we have very big network?

Kim Woo Hyun Seminar September 4, 2019 18 / 42



Second Generation

Vanishing Gradient Problem

Because of sigmoid function, gradient is going to 0 while repeat
Back-propagation.

Kim Woo Hyun Seminar September 4, 2019 19 / 42



Thrid Generation

Rectified Linear Unit : ReLU

Convex : good at gradient descent.

Cost of Back-propagation is decrease. (since f ′(x) = 1 or 0 always)

Safe from Vanishing Gradient Problem

All problems are from bad activation function.

Kim Woo Hyun Seminar September 4, 2019 20 / 42



Thrid Generation

Notice at gap between tanh and ReLU.

Kim Woo Hyun Seminar September 4, 2019 21 / 42



Section 2. Convolutional Neural Network

Convolution layer

ReLU layer

Pooling layer

Fully Connected layer

Kim Woo Hyun Seminar September 4, 2019 22 / 42



Convolution layer

2D Convolution

Nothing specially different from 1D convolution.

Input size = 7x7x1

Filter size = 3x3

The number of filter = 1

Stride = 1

Kim Woo Hyun Seminar September 4, 2019 23 / 42



Convolution layer

What is the filter do?

Assume weights are already trained.

Curve detection filter and its visualization.

Kim Woo Hyun Seminar September 4, 2019 24 / 42



Filter

If Original image has similar shape at part, the result of Mult and Sum
has a large number.

Kim Woo Hyun Seminar September 4, 2019 25 / 42



Filter

In contrast, If not, the result has a small number.

Trained filter can give a score for which feature exist or not!!

Kim Woo Hyun Seminar September 4, 2019 26 / 42



Filter

Each score is grouped together and forms layer by convolution.

Kim Woo Hyun Seminar September 4, 2019 27 / 42



Padding

Attach zeros around the layer. (Zero-padding)

Prevent from size decreasing while convolution.

To catch the features at edge more detail.

Kim Woo Hyun Seminar September 4, 2019 28 / 42



Convolution layer

Convolution

W = width, H = Height, D = Depth, P = Padding, S = stride.
F = Filters W and H, N = Number of filters.

(6+1)x(6+1)x3 input
Two 3x3x3 filters
⇒ Two output with 3x3x2

W2 = W−F+2P
S + 1 =

6−3+2∗1
2 + 1 = 3

H2 = H−F+2P
S + 1 =

6−3+2∗1
2 + 1 = 3

D2 = N = 2 (Depth is same
with Number of filters)

Kim Woo Hyun Seminar September 4, 2019 29 / 42



ReLU layer

Zero OR Itself.

Used to give Non-linearity and
threshold.

No parameter. No size change.

Kim Woo Hyun Seminar September 4, 2019 30 / 42



ReLU layer

Why we have to give a Non-linearity.

Experimental result is given.

With Image.net classification test.
Kim Woo Hyun Seminar September 4, 2019 31 / 42



Pooling layer

Usually, using Max-Pooling. (If higher value is important)

No depth change.

Reduce Complexity!!!!!!(Down-sampling) 1
4 = 75% reduced.

Not Recessary. (But Recommended)

W2 =
W − F
S

+ 1 =
224− 2

2
+ 1 = 112

Kim Woo Hyun Seminar September 4, 2019 32 / 42



Fully Connected layer

Make 2D layer to 1D line layer (Make layer to vector.)

Used to compare with target.

Making method is not only one.

Kim Woo Hyun Seminar September 4, 2019 33 / 42



Section 3. Painting Style Transfer

VGGnet

Algorithm and Loss function

Result

Kim Woo Hyun Seminar September 4, 2019 34 / 42



VGGnet

Fconv = 3 (3 ∗ 3 ∗D), Sconv = 1, Padding = 1

FPool = 2 (2 ∗ 2 ∗D), Spool = 2

W − Fconv + 2P

Sconv
+ 1 =

224− 3 + 2 ∗ 1

1
+ 1 = 224

W − Fconv

Spool
+ 1 =

224− 2

2
+ 1 = 112

Kim Woo Hyun Seminar September 4, 2019 35 / 42



Painting style transfer

Weights must be trained already.

a = style image, p = content image

x = generated image.

Kim Woo Hyun Seminar September 4, 2019 36 / 42



Painting style transfer

Nl = Number of feature maps of lth layer

Ml = Size of feature map of lth layer

F l ∈ RNl∗Ml

F l
ij is the activation of the ith filter at position j in layer l

P l
ij is same with F l

ij but it is from content image.(conv4 2)

Lcontent(~p, ~x, l) =
1

2

∑
i,j

(F l
ij − P l

ij)
2.

So this loss function want to minimize distance of each value of same
position between content layer and generate layer.

Kim Woo Hyun Seminar September 4, 2019 37 / 42



Gl ∈ RNl∗Nl

Gl
ij is the inner product between the vectorized feature maps i and

j in layer l (Gram matrix of style layer)

Gl
ij =

∑
k

F l
ikF

l
jk

Al
ij is same with Gl

ij but it is from content image.

El =
1

4N2
l M

2
l

∑
i,j

(Gl
ij −Al

ij)
2

Lstyle(~a, ~x) =

L∑
l=0

wlEl

They have thought the style information is hide on correlation but I
can’t understand.

Kim Woo Hyun Seminar September 4, 2019 38 / 42



Painting style transfer

The differential of each loss function are

∂Lcontent
∂F l

ij

=

{
(F l − P l)ij if F l

ij > 0

0 if F l
ij < 0,

∂El

∂F l
ij

=

{
1

N2
l M

2
l

((F l)T(Gl −Al))ji if F l
ij > 0

0 if F l
ij < 0.

And the total loss is

Ltotal(~p,~a, ~x) = αLcontent(~p, ~x) + βLstyle(~a, ~x)

α and β are learning rate.

Kim Woo Hyun Seminar September 4, 2019 39 / 42



~x := ~x− λ∂Ltotal
∂~x

λ is learning rate.

At first, ~x is white noise image.

Not learning weights, learning ~x!!!!
Kim Woo Hyun Seminar September 4, 2019 40 / 42



Result

+

Kim Woo Hyun Seminar September 4, 2019 41 / 42



Bonus

Thank you!

Kim Woo Hyun Seminar September 4, 2019 42 / 42


	Neural Network
	First Generation (ANN, Perceptron)
	Second Generation (MLP, Back-propagation)
	Thrid Generation (ReLU)

	Convolutional Neural Network
	Convolution layer
	ReLU layer
	Pooling layer
	Fully Connected layer

	Painting Style Transfer
	VGGnet
	Algorithm and Loss function
	Result


