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@ Ncural Network
e First Generation (ANN, Perceptron)

e Second Generation (MLP, Back-propagation)
@ Thrid Generation (ReLU)

© Convolutional Neural Network
e Convolution layer
e ReLU layer
@ Pooling layer
e Fully Connected layer

© Painting Style Transfer
® VGGnet
@ Algorithm and Loss function
@ Result
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First Generation

Artificial Neural Network : ANN

At 1943 McCulloch, Warren S., and Walter Pitts suggested
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@ Mimic the human neural structure by connecting switches
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First Generation

Perceptron
In 1958 Frank Rosenblatt suggested Linear Classifier.
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e Expected computer can do things human can do better at that
time.

@ Basic structure is not changed until now.

e Using sigmoid with Activation function. (Make output € [0,1])
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First Generation

Problem
In 1969 Marvin Minsky, Seymour Papert proved limitations of
perceptron.
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It can’t solve XOR problem even.
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Second Generation

Multi-Layer Perception : MLP

Make neurons deeper by make hidden layers of perception
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@ Solve the Non-Linear problems with multiple linear classifier.

e Too many parameters!!

@ Needs parameter controller.
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Second Generation

Back-propagation

Feedback algorithm controls the weights of neural network.
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@ ¢ : input layer
@ h : hidden layer
@ o0 : output layer

e w;; : weight connected to the neuron 1 to ].
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Second Generation
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@ out : Output value of a neuron.

e in : sum of weighted output of connected neurons.
(in = > w * out)
o t: Target value (Choose yourself!)

e Sigmoid activation function. Ex) outps = o(inpg) = =
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Second Generation

Error with Sum of square (Euclidean Distance)

1 1
E = §(t5 — outys)* + 5(156 — outeg)?

We want to see how much each weights influence to £ = Calculate aaE

Example) Calculate % with Chain-rule
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Second Generation

First,

oF 0 1 , 1 ,
_ ~(t5 — out Lo o2l = out e 4
(90ut05 80Ut05 2( 5 ou 05) + 2( 6 ou 06) outlys 5

Second,
5’0ut05 o 80(@'7105)
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Second Generation

The sigmoid function o(x) is

1
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The differential of sigmoid o(x)
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Second Generation

First,

oE 0 1 1
[§(t5 — 0ut05)2 + §(t6 — 0ut06)2] = outys — s

dout 5 B Oout 5
Second,

80ut05 o 8a(in05)

ain05 B 82'77,05 - O-(in05)(1 o O-(in05)) — 0151505(1 - 0Ut05)
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Second Generation

First,

2

oE 0 1
Dout,s  Ooutys

1
—(t5 — 0ut05)2 + §(t6 — 0ut06)2] = outys — ts
Second,

doutps B 9o (ino5) = 0 (ines) (1 — o(ineys)) = outes(1 — out,s)

Dings  Oings
Third,
0inys 8(0uth3 * w35)
= = outps
8w35 6w35
Finally,
oF
= (outys — t5)(1 — outys)outs0utpys
dwss

Beautifully, all parameters are already calculated and what we have to
do is easy math. J
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Second Generation

Then, how to update weights?
OF

w :=w — r—, r is constant called learning rate.

ow

So, updated wss is
wss = wss — T(outys — t5) (1 — outys)out,s0uthys

This method called Gradient descent.

Kim Woo Hyun Seminar September 4, 2019 14 / 42



Second Generation

Gradient descent

Simply, moving to orthogonal direction from contour line.

Why the direction to orthogonal? At minimum point of f(x,y),

of 0
Vf(x,y) = (a_ia_i) =0

Assume direction of contour line is (a, b). Then using Tayler series,
derive orthogonal direction by linearize the contour line.

f@r+a,y1 +b) = f(z1,y2) + %GJF g—ngF---
The condition of (a,b) that minimize error is
of | 0f
b=
9z " + oy 0
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Second Generation

0 0
Ifa =3 and b= —¢L.

of of, _ofof of, 9f
8xa+8yb_8a:8y+8y( Ox

) =0

In addition, the inner product of gradient and (a,b) is

i) @b = (5 ) - (-5 ) =o

It means the vector orthogonal to contour line is gradient itself. And if
we track the gradient until it is 0, we can find minimum point. J

*Caution it can be a saddle point not minimum but I don’t want to
discuss in this time because I don’t know.
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Second Generation

Problems

e Gradient descent is bad at non-convex function, but sigmoid is
non-convex function.

o"(x) = a’o(@)(1 — o (x))(1 — 20(x))

a’o(x)(1 —o(x))>0but —1<1—20(z) <1

e Cost of back-propagation is Big.
@ Vanishing Gradient Problem.
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Second Generation

Cost of back-propagation.

Cost is big at shallow layer.

For example,

OF  OF § Ooutys § 0inps
Owys  Ooutps Oinpg  Owis

= [(outos — t5){outos(1 — outes) fwss + (outes — ts){outes(1 — outes) fwse)
*(1 — outp3) * outps * out;y

Of course! since it is chain-rule algorithm, it is easier than looks like.
However if we have very big network?
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Second Generation

Vanishing Gradient Problem

Because of sigmoid function, gradient is going to 0 while repeat
Back-propagation.

1
Z) =
¢(2) 1+e72
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Thrid Generation

. ReLU

R(z) =maz(0, z)

o |
-10 -3 o 5 10

Rectified Linear Unit : ReLLU

@ Convex : good at gradient descent.

e Cost of Back-propagation is decrease. (since f'(x) = 1 or 0 always)
e Safe from Vanishing Gradient Problem

All problems are from bad activation function.
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Thrid Generation

Table 3: Non-linearities tested.

Name Formula Year
none y=x -

sigmoid y = H-% 1986
tanh y = S;:—_I__} 1986
ReLU y = max(x, 0) 2010
(centered) SoftPlus y = In (e +1) —In2 2011
LReLU y = max(x, ax), a = 0.01 2011
maxout y = max(Wix + by, Wax + ba) 2013
APL y = max(x,0) + Zle al max (0,—z + bf) 2014
VLReLU y = max(x, ax), o € 0.1,0.5 2014
RReLU y = max(x, ax), & = random(0.1, 0.5) 2015
PReLU y = max(x, ax), & is learnable 2015
ELU y=x,1fx >0, else a(e” = 1) 2015

Notice at gap between tanh and ReL.U.
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Section 2. Convolutional Neural Network
e Convolution layer
@ ReLU layer
e Pooling layer

e Fully Connected layer
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Convolution layer

2D Convolution
Nothing specially different from 1D convolution.

e Input size = 7x7x1

o Filter size = 3x3
@ The number of filter = 1
@ Stride =1
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Convolution layer

What is the filter do?

Assume weights are already trained.

0 0 0 0 0 30 0

0 0 0 0 30 0 0

0 0 0 30 0 0 0

0 0 0 30 0 0 0

0 0 0 30 0 0 0

0 0 0 30 0 0 0

0 0 0 0 0 0 0

Pixel representation of filter Visualization of a curve detector filter

Curve detection filter and its visualization.
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Original image

Visualization of the filter on the image
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Visualization of the Pixel representation of the receptive

receptive field field

>
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Pixel representation of filter

Multiplication and Summation = (50%30)+(50*30)+({50*30)+(20*30}+(50%30) = 6600 (A large number!)

If Original image has similar shape at part, the result of Mult and Sum

has a large number.
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0|0 0
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Visualization of the filter on the image Pixel representation of receptive field Pixel representation of filter
Multiplication and Summation=10
In contrast, If not, the result has a small number. J
Trained filter can give a score for which feature exist or not!! ]
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input neurons

0006O- first hidden layer

Visualization of 5 x 5 filter convolving around an input volume and producing an activation map

Each score is grouped together and forms layer by convolution.
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0 0
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final 8x8

o Attach zeros around the layer. (Zero-padding)
@ Prevent from size decreasing while convolution.

@ To catch the features at edge more detail.
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Convolution layer

W = width, H = Height, D = Depth, P = Padding, S = stride.
F = Filters W and H, N = Number of filters.
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ReLU layer

10

ReLU

R(z) =maz(0, z)

-10

-5 0

10

@ Zero OR Itself.

@ Used to give Non-linearity and

threshold.

e No parameter. No size change.
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ReLU layer

Why we have to give a Non-linearity.

Experimental result is given.

ol ____IlllIIII

Top-1 acc gain [pp]
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Figure 2: Top-1 accuracy gain over ReLU in the CaffeNet-128 architecture. MaxS stands
for "maxout, same compexity”, MaxW — maxout, same width, CSoftplus — centered softplus.
The baseline, i.e. ReLU, accuracy is 47.1%.

With Image.net classification test.
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Pooling layer

224x224x64
Single depth slice 112x112x64
\ pool
X 111112 4 —_—
max pool with 2x2 filters
5|16 |78 and stride 2 6|8
3/2|1/0 34 | ‘
1 | 2 .
224 downsampling— 112
112
y 224
e Usually, using Max-Pooling. (If higher value is important)
@ No depth change.
o Reduce Complexity!!!!!!(Down-sampling) 1 = 75% reduced.
@ Not Recessary. (But Recommended)
W —F 224 — 2
W2:T+1:T+1:112
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Fully Connected layer

g
o

:
o
e -] ~o
° Mo
o Mo
o o
o o
o o
o o
. . o o
convolution + max pooling vec | \:

nonlinearity | °
| |
convolution + pooling layers fully connected layers  Nx binary classification

o Make 2D layer to 1D line layer (Make layer to vector.)
@ Used to compare with target.

e Making method is not only one.
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Section 3. Painting Style Transfer
e VGGnet
@ Algorithm and Loss function
@ Result
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{ 224x224

e

@ Feony =3 (3%x3% D), Seony = 1, Padding = 1
@ Fpooy = 2 (2*2*D)7Spool:2
— F, 2P 224 — 2x1
W= Feomn £28,  _ S Y
SCO’I’L’U 1
— Feon 224 — 2
W Y4l = +1=112
Spool 2
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Painting style transfer

2
By = Z (GF - Af) Liotal = 0Lcontent + 6£style

L L L
o ——  Gh=) FiF}
k
- 18- ~ - -
“poom 9P o5 ﬁ

2
OFL oFL—1 Leontent = Z (Fl - Pl)
- P! ~_ Tonva 2 =

120/

B M—’ I:I |:| |l
— pooli =

Gradient
descent

@ Weights must be trained already.

@ a = style image, p = content image

S

generated image.
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Painting style transfer

@ N; = Number of feature maps of [th layer
@ M; = Size of feature map of [th layer
o F! e RNv:M

) F,Ll] is the activation of the i*" filter at position j in layer I

o lej is same with le‘7 but it is from content image.(conv4_2)

1

»Ccontent(_; T, l) — 5 Z(F’Llj - P’Llj)2
,J

So this loss function want to minimize distance of each value of same
position between content layer and generate layer. J
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° Gé ; 1s the inner product between the vectorized feature maps ¢ and
j in layer [ (Gram matrix of style layer)

l l l
Gij =D FiFj
k

o A?L-j is same with Géj but it is from content image.

They have thought the style information is hide on correlation but I
can’t understand. J
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Painting style transfer

The differential of each loss function are

OLcontent o (Fl - Pl)z‘j if F’Llj >0
OF, |0 if F. <0,

0E _ W((FZ)T(@ — AN i Fj >0
oOF; o if F, < 0.
And the total loss is

Ltotal (ﬁa C_ia f) — aﬁcontent (ﬁ? f) + Bﬁstyle(67 f)

@ « and [ are learning rate.
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2
Er = Z (GL - AL) Ltotal = O“Ccontent =+ 5£style

——  GL =) FiFj.

512 E
I3 P ﬁ =
! “convs_33 = I FE :oonvs,?::
X Saic ﬂ

IEL, IEy

FE UFL'lﬁ T Leontent = Y_ (F' = pY?

128 g T
T U ] =)
I u
lJ |—I—- (T [ I ———
Sdegt .

@ ) is learning rate.
e At first, ¥ is white noise image.
e Not learning weights, learning z!!!!
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Thank you! ]
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