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Overview

• What are mimetic discretizations and why we care
• Why existing interpolation methods won’t work

• Solution: make pre/post processing consistent with discretization
• Addressing the problem using a differential form/exterior calculus approach

• 4 types of fields, 4 types of discretization and 4 types of interpolation
• the interpolation method is not a choice!

• Algorithms
• Requires computing collision (intersection) of a grid with an object (point, line, area

or volume)
• Results
• Summary and further work
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What we mean by mimetic

• Discretization that preserves the mathematical properties of a field
• ∇×∇ = 0 and ∇ · ∇× = 0
•
∫
∇× E · dS =

∮
E · d` and

∫
∇ ·DdV =

∮
D · dS

• Conserves quantities to near machine accuracy
• line integral
• surface flux
• volume integral

• Free of spurious modes and numerical pollution
• Mixed finite element methods based on H(curl) and H(div) elements
• Finite Difference Finite Time (FDFT) domain
• Discrete Exterior Calculus (DEC) methods

• Bossavit (1989), Hiptmaier (1997), Hirani (2003), Arnold (2002), Gilette & Bajaj
(2010), Cotter & Shipton (2014), Samtaney & Mohamed (2015)
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Motivation
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Want answers to following questions

How should we interpolate vector fields with staggered components?

• Arakawa C/D grids
• Components are on cell faces or edges
• Arises in computational fluid dynamics and electromagnetics

Arakawa C-grid Arakawa D-grid
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Can we unify existing interpolation methods?

• Linear, used since Babylonian times (2000-1700 BC)
• Conservative or area weighted, used in climate studies to enforce conservation
• In both cases the interpolation weights are ratios of areas (volumes)
• When is bilinear applicable and when should one use conservative?
• Should vector fields with staggered components use bilinear or conservative? Or

something else?

Bilinear Conservative
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How to handle curvilinear grids with non-orthogonal cells?

Example: cubed-sphere grid
• Project grids on the surface of a cube onto a sphere
• Six logically rectangular grids (cannot be represented as a single structured grid)
• No pole-like singularity but some distortion where three tiles meet
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How to compute surface fluxes?

For example compute water fluxes across area
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The type of field determines the
discretization
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Some notation

Coordinates

• ξi is curvilinear coordinate, i = 1, 2, 3
• x is position (in physical space)

Wedge product
∧ (antisymmetric, like cross-product ×)

Exterior derivative and contravariant bases

• d

• similar to ∇, ∇×, or ∇·
• dξi is basis function ↔ ∇ξi
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Why four types of fields?

One derivative - 4 fields

• 0-form: α(x) (just a function of space, one component)
• appropriate for scalar fields that don’t change under coordinate transformations
• Example: temperature

• 1-form: β =
∑
i βidξ

i, basis is dξ1, 3 components
• appropriate for vector fields
• Examples: electric field E and induction H

• 2-form: γ =
∑
i<j γijdξ

i ∧ dξj , basis is dξi ∧ dξj , 3 components
• appropriate for pseudo-vector fields, obtained by applying cross product of 1-forms
• Examples: magnetic field B and displacement field D

• 3-form: ω = ω123dξ
1 ∧ dξ2 ∧ dξ3, basis is dξ1 ∧ dξ2 ∧ dξ3, one component

• appropriate for pseudo-scalar, density-like fields
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Discretized versions of the fields

Association of form with cell elements

• 0-form: on nodes
•
∫
α = α (integral is a no op)

• 1-form: on edges
•
∫
β is a line integral

• 2-form: on faces
•
∫
γ is a surface integral

• 3-form: cell centred
•
∫
ω is a volume integral

Differential forms like to be integrated
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Ordering of vertices determines orientation of line, surface, volume
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One rule for ∇×∇ = 0 and ∇ · ∇× = 0

What it means to be mimetic (1): d2 = 0!

• dα0 ↔ ∇α
• dβ1 ↔ ∇× β
• d2α0 ↔ ∇×∇α = 0
• dγ2 ↔ ∇ · γ
• d2β1 ↔ ∇ · ∇× β = 0

What it means to be mimetic (2); divergence, Stokes’ and gradient theorems∫
M dαk =

∮
∂M αk
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It’s easy to write integral of a differential form in any coordinate system

Pullback of a differential form introduces Jacobian

•
∫
β(ξ)dξ =

∫
β(t)dξdtdt (t is line parametrization)

•
∫
γ(ξ)dξ1 ∧ dξ2 =

∫
γ(η) det

(
∂ξ
∂η

)
dη1 ∧ dη2 (η1 and η2 are surface

parametrization)
•
∫
ω(ξ)dξ1 ∧ dξ2 ∧ dξ3 =

∫
ω(η) det

(
∂ξ
∂η

)
dη1 ∧ dη2 ∧ dη3

We will see in next section that the above are exactly what we need for
interpolation.
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Interpolation
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Generalizing “interpolation”

Making interpolation work for nodal, edge, face and cell fields∫
f =

∑
i fi
∫
T φi

• φi is basis k-form, k = 0, 1, 2 or 3
• T is target (point, line, area or volume)
• fi is field integral over cell element k (node, edge, face or cell)
•
∫
T φi is the interpolation weight

• i index runs over all the degrees of freedom (points, edges, faces etc., as
appropriate)
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Identifing cell elements for low order basis forms
i = (i1, i2, i3) with ij ∈ {0, 1, ?}

• 0 is low side
• 1 is the high side
• ? element varies in this direction
• (?, ?, ?) is the cell
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Want the basis functions to satisfy orthogonality condition

∫
i φj = δij

• i is cell element (node, edge, face, cell)
• j is basis function index
• nodal bases are zero on all nodes expect one where it is one
• edge bases have zero integral on all edges except itself where it is one
• face bases have zero integral on all faces except itself where it is one
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The k = 0 bases are the usual tent functions

• φ000 = (1− ξ1)(1− ξ2)(1− ξ3)
• φ001 = (1− ξ1)(1− ξ2)ξ3

• φ010 = (1− ξ1)ξ2(1− ξ3)
• φ011 = (1− ξ1)ξ2ξ3

• · · ·
• φ111 = ξ1ξ2ξ3
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The k = 1, 2, 3 bases basis forms
k = 1 bases are H(curl) finite elements

• φ00? = (1− ξ1)(1− ξ2)dξ3

• φ01? = (1− ξ1)ξ2dξ3

• · · ·
• φ?11 = ξ2ξ3dξ1

k = 2 bases are H(div) finite elements

• φ0?? = (1− ξ1)dξ2 ∧ dξ3

• φ1?? = ξ1dξ2 ∧ dξ3

• · · ·
• φ??1 = ξ3dξ1 ∧ dξ2
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Observe how the k = 1, 2 bases satisfy the orthogonality condition

Edge basis is perpendicular Face basis is tangent
to neighbouring edges to neighbouring faces
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Computing the interpolation weights

Assume target is a simplex
T : λ→ ξ = ξ0 +

∑k
i=1 λi(ξi − ξ0)

Interpolation weight is the pullback, det(∂ξ/∂λ) is size of simplex in ξ space∫
T φ =

∫
T ∗φ(ξ) =

∫
φ(λ) det(∂ξ/∂λ) independent of ξ coordinate system!

For 1-form (1− ξ1)ξ2dξ3 and ξ = ξ0 + λ(ξ1 − ξ0):∫
T φ = (x1 − x0)

∫ 1
0 dλφ(ξ0 + λ(ξ1 − ξ0))

Integrals can be computed analytically for polynomial bases and target simplices
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Computing intersection of grid with target
grid cells with target points, grid faces with target edges, grid edge with target
faces, etc
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Results
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Divergence-free field in Cartesian coordinates
Stream function

• v = dz ∧ dψ with stream function ψ = cos 2πx
4π + y2

• Closed surface fluxes B and C are exact
• Flux on A is exact because start/end points are nodes
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Vector field with singularity

v = xdx+ydy
2π(x2+y2) chosen such that

∮
v is 1 if contour contains singularity, 0 otherwise

Figure: Radial field
Figure: Numerical error
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Flux computation on the cubed sphere v = dψ ∧ dr

Error depends distance of start/end point from edge/face

• ψ is a function of longitude and latitude
• Some cells have 120 deg angle between edges

Integration path/surface Error is ∼ 1/N2
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Checking Maxwell’s equations

F = E ∧ dt+B. Faraday’s law is dF = 0 (no charge). Plane wave.
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Summary
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Different types of field ↔ different staggerings

• nodal for scalar fields (e.g. temperature)
• edge for vector fields (e.g. electric field)
• face for pseudo-vector fields (e.g velocity)
• cell for pseudo-scalar fields (e.g. density)
• type of field → interpolation method
• field values set via cell, face and edge integrals (instead of vector field

components)
• who needs vector fields?

Masking and partially valid cells?
Ok if taking account of partial cell, faces, edges when setting cell, face and edge
integrals. Done!
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Basis function extensions

What about tetrahedra?
Similar approach except that the basis functions are Whitney’s

Higher order basis functions?
Initial work indicates that higher order basis functions can be used. These also satisfy
the orthogonality condition

∫
i φj = δij on sub-cell edges, faces and cells. Quadratic

elements effectively split each cell into 8 sub-cells, each face into 4 sub-faces and each
edge into 2 sub-edges.
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Goal is to apply the rigour of dynamical cores to pre- and post-processing tools.
Overtime we expect the distinction between dynamical core and pre-/post-processing

to diminish.

Thank You


