RING

Delhi Technological University DELHI

Submitted By: YOGESH MALIK

U))

RING

\bullet DEFINITION : -

A non-empty set R, equipped with two binary operations called addition and multiplication denoted by (+) and (.) is said to form a ring if the following properties are satisfied:

Properties under Addition:

- 1. R is closed with respect to addition
- i.e., $a, b \in R$, then $a + b \in R$
- 2. Addition is associative

i.e.,
$$a + (b + c) = (a + b) + c \forall a, b, c \in R$$

- 3. Addition is commutative
- i.e., $a + b = b + a \forall a, b \in R$

- 4. Existence of additive identity
- i.e., there exist an additive identity in R denoted by in R such that
- $0+a=a=a+0 \ \forall \ a \in R$
- 5. Existence of additive inverse
- i.e., to each element a in R, there exists an element -a in R such that
- -a + a = 0 = a + (-a)

Properties under Multiplication:

- 6. R is closed with respect to multiplication
- i.e., if $a, b \in R$, then $a, b \in R$
- 7. Multiplication is associative
- i.e., $a.(b.c) = (a.b).c \ \forall \ a,b,c \in R$
- 8. Multiplication is distributive with respect to addition
- i.e., $\forall a, b, c \in R$, a.(b+c) = a.b + a.c [Left distributive law]
- And (b+c).a = b.a + c.a [Right distributive law]

• REMARK:

Any algebraic structure (R, +, .) is called a ring if (R, +) is an abelian group and R is closed, associative with respect to multiplication and multiplication is distributive with respect to addition.

U))

*** TYPES OF RING**

1. COMMUTATIVE RING:

A ring in which $a.b = b.a \ \forall \ a,b \in R$ is called commutative ring.

2. RING WITH UNITY:

If in a ring, there exist an element denoted by 1 such that 1.a = a = a.1 $\forall a \in R$ is called a ring with unity element.

The element $1 \in R$ is called the unit element of the ring.

Thus, if R satisfies the all eight properties of ring and also have multiplicative identity, then we define R as ring with identity.

3. NULL RING OR ZERO RING:

The set R consisting of a single element 0 with two binary operations defined by 0 + 0 = 0 is a ring and is called null ring or zero ring.

Eg. Prove that the set Z of all integers is a ring with respect to addition and multiplication of integers.

Proof:

- . Properties under Addition :
- 1. Closure property: As sum of two integers is also an integer,
- Z is closed with respect to addition of integers .
- 2. Associativity: As addition of integers is also an associative composition
- \therefore , $a + (b + c) = (a + b) + c \forall a, b, c \in Z$
- 3. Existence of additive identity: For $0 \in \mathbb{Z}$, $0 + a = a = a + 0 \ \forall \ \mathbf{a} \in \mathbb{Z}$.
- \therefore , 0 is additive identity.
- 4. Existence of additive inverse: For each $a \in Z$ there exist $-a \in Z$ such
- that a + (-a) = 0 = (-a) + a, where 0 is identity element.

5. Commutative property:

$$a+b=b+a \ \forall \ a,b \in Z$$

.Properties under Multiplication:

6. Closure property with respect to multiplication: As product of two integers is also an integer

$$a.b \in Z \ \forall \ a,b \in Z$$

7. Multiplication is associative:

$$a.(b.c) = (a.b).c \ \forall \ a,b,c \in Z$$

8. Multiplication is distributive with respect to addition:

$$\forall a, b, c \in \mathbb{Z}, a.(b+c) = a.b + a.c$$

And
$$(b+c).a = b.a + c.a$$

Hence, Z is a ring with respect to addition and multiplication of integers.

□ ト 1 回 ト 1 章 ト 1 章 か 9 Q P

Note:

- 1. As 1.a = a.1 = a, $\forall a \in Z$,
- \therefore 1 is a multiplicative identity of Z.
- **2.** As $a.b = \overline{b.a}$, $\forall a, b \in Z$,
- : multiplication of integers is commutative .

Hence, Z is a commutative ring with unity.

 $\Re Remark:$

A ring R is said to be Boolean ring if $x^2 = x \ \forall \ x \in R$.

(((

Eg. Prove that a ring R in which $x^2 = x \ \forall \ x \in R$, must be commutative.

OR

Show that a Boolean ring is commutative.

Proof:

Let
$$x, y \in R \Rightarrow x + y \in R$$

By give condition, $(x+y)^2 = x + y \ \forall \ x, y \in R$

$$\Rightarrow (x+y)(x+y) = x+y$$

$$\Rightarrow x.x + x.y + y.x + y.y = x + y$$

$$x^2 + x \cdot y + y \cdot x + y^2 = x + y$$

$$\Rightarrow x + x \cdot y + y \cdot x + y = x + y [: x^2 = x, y^2 = y]$$

$$\Rightarrow x.y + y.x \ge 0$$

$$\Rightarrow x.y = -(y.x)$$

$$x.y = (-y.x)^2$$
(1)

Again
$$\forall y \in R$$
, $(y+y)^2 = y+y$
 $\Rightarrow (y+y)(y+y) = y+y$
 $\Rightarrow y.y+y.y+y.y+y.y = y+y$
 $y^2+y^2+y^2+y^2=y+y$
 $\Rightarrow y+y+y+y=y+y$
 $\Rightarrow y+y+y=0$
 $\Rightarrow y=-y$
 \therefore from (1), $x.y=(yx)^2$
 $x.y=yx$
Thus $x.y=y.x$ $\forall x,y \in R$

Hence,R must be commutative.

A ring (R, +, .) is said to be $without\ zero\ divisors$ if for all a, b belong to R a.b = 0 that implies either a = 0 or b = 0On the other hand, if in a ring R there exists non zero elements a and b such that a.b = 0, then R is said to be a $ring\ with\ zero\ divisors$. Eg.

- 1. Sets Z, R, C, and Q are without zero divisors rings.
- 2. The ring $(0, 1, 2, 3, 4, 5, +6, \times 6)$ is a ring with zero divisors.

Eg. Prove that the set $\{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 and multiplication modulo 6 as composition is a ring with zero divisors.

Proof:

Let $R = \{0, 1, 2, 3, 4, 5\}$

Properties under addition:

1. Closure law:

As all the entries in the addition composition table are elements of set R is closed w.r.t. addition modulo 6.

2. Associative law:

The composition +6 is associative. If a,b,c are any three elements of R then

$$a + 6 (b + 6 c) = a + 6 (b + c)$$

a + 6 (b + 6 c)= least non-negative remainder when a + (b + c) is divided

by 6

a+6(b+6c)=least non-negative remainder when (a+b)+c is divided by 6

$$a + 6 (b + 6 c) = (a + b) + 6 c$$

$$a + 6 (b + 6 c) = (a + 6 b) + 6 c$$

3. Existence of identity:

As
$$0 + 6 \ a = a = a + 6 \ 0 \ \forall \ a \in R$$

4. Existence of inverse:

From the table, we see that the inverse of $\{0, 1, 2, 3, 4, 5\}$ are $\{0, 5, 4, 3, 2, 1\}$ respectively. Hence, additive inverse exists.

5. Commutative law:

For all $a, b \in R$, we have a + 6b = b + 6a

Properties under multiplication:

- 6. Closure law for multiplication:
- All the entries in the multiplication composition table are element of set ${\cal R}$, therefore ${\cal R}$ is closed with respect to multiplication modulo 6.
- 7. Associative law for multiplication:

Let
$$a, b, c \in R$$

$$\therefore a \times \mathbf{6} (b \times \mathbf{6} c) = a \times \mathbf{6} (bc)$$

$$a \times \mathbf{6} \; (b \times \mathbf{6} \; c)$$
 = least non – negative remainder when $a(bc)$ is divided by

$$a \times 6$$
 $(b \times 6$ $c)4$ = least non negative remainder when $(ab)c$ is divided by 6

$$a \times 6 (b \times 6 c) = ab \times 6 c$$

$$a \times 6 (b \times 6 c) = (a \times 6 b) \times 6 c$$

8. Distribution laws:

If a, b, c be any three elements of R, then

$$a \times 6 (b + 6 c) = a \times 6 (b + c)$$

 $a \times 6 \ (b + 6 \ c)$ = least non negative remainder when a(b + c) is divided by

6
$$a \times 6$$
 $(b + 6c) = least non - properties remainder when $ab + ac$ is divided$

 $a \times 6$ (b + 6 c) = least non – negative remainder when ab + ac is divided by 6

$$a \times 6 (b + 6 c) = ab + 6 ac$$

$$a \times 6 (b + 6 c) = a \times 6 (b + 6 c)$$

similarly,
$$(b + 6c) \times 6a = (b \times 6a) + 6(c \times 6a)$$

Hence, R is a ring with respect to given compositions.

As $(R, +6, \times 6)$ is ring,

Now for 2, 3 R , $2 \times 3 = 0$

i.e., product of two non zero element is equal to the zero element of the ring .

Hence, R is a ring with zero divisors.