
Homework 2

Problem 1.

1. I implement a Matlab function that minimizes the logistic regression objective, but with L2
regularization on the weight vector, using the function fminunc to compute the minimum. The
regularization term is an L1 norm on w and doesn’t include the offset w0.
There is no closed expression for the optimal values of w and w0, but we can compute them using
the gradient descent method (or a built in matlab function in this case).

2. The datasets contain 400 2D data points each, with labels y = +1 or y = −1. We set λ = 0
and run the previous logistic regression classifier on each of the 4 datasets (train) and test it on
the validate dataset.
We obtain the following table (table 1) summarizing the offset, weight vector and error rate on the
train and validate set:

Dataset w0 w error rate in train set error rate in validate set

stdev1 -22.4496 (95.3841,101.2140) 0 0
stdev2 -0.0470 (0.7638,1.1144) 0.0925 0.08
stdev4 -0.0093 (0.2363,0.2034) 0.26 0.2475
nonsep 0.0006 (-0.0248,-0.0237) 0.485 0.5075

Table 1: table of weight and error values for the 4 datasets using the logistic regression classifier
with L1 regularization, λ = 0.

We see that the error rate on stdev1 is 0 for both train and validate set.
For both stdev2 and stdev4, the train error rate is slightly higher than the validate error rate.
The error is high for the nonsep dataset. That’s because we can’t use a linear separator to classify
the data, so the error is around 0.5.
Using the table above, we can compute the decision boundary equation, we then obtain the follow-
ing plots (fig.1-4 in page 2) for all 4 datasets (train and validate) for λ = 0:

3. The following table gives the weight and error values for the 4 datasets using the logistic
regression classifier with L1 regularization, λ = 1000.

Dataset w0 w error rate in train set error rate in validate set

stdev1 0.008 (0.1370,0.1409) 0 0
stdev2 0.0013 (0.1208,0.1338) 0.095 0.0625
stdev4 -0.0029 (0.0936,0.0832) 0.2625 0.2375
nonsep 0.0001 (-0.0048,-0.0047) 0.4825 0.4975

Table 2: table of weight and error values for the 4 datasets using the logistic regression classifier
with L1 regularization, λ = 1000.
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(a) stdev1 train (b) stdev2 train

Figure 1: data points and decision boundary with λ = 0

(a) stdev4 train (b) nonsep train

Figure 2: data points and decision boundary with λ = 0

(a) stdev1 validate (b) stdev2 validate

Figure 3: data points and decision boundary with λ = 0

(a) stdev4 validate (b) nonsep validate

Figure 4: data points and decision boundary with λ = 0
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In table 2, we see that we still have 0 error rate on stdev1 (train and validate).
We obtain the same error rate on stdev2 and stdev4 train sets but the validate error rate slightly
improves when we increase λ.
The error rate is slightly improved for the nonseparate dataset (train and validate). Looking at the
data, we expect it to stay around 0.5 when using a linear separator.
In this case, when λ is very large, the offset tends to 0 and the weight vector tends to (0.5,−0.5).
We can look at the errors on the train and validate set when we increase λ = 106 in table 3:

Dataset error rate in train set error rate in validate set

stdev1 0 0
stdev2 0.95 0.0625
stdev4 0.2625 0.2375
nonsep 0.49 0.4925

Table 3: table of weight and error values for the 4 datasets using the logistic regression classifier
with L1 regularization, λ = 106.

Problem 2. 1. I implement the dual form of linear SVM with slack variables. The function takes
the data as input and returns the alpha vector and the support vectors, allowing to compute the
bias, the weight vector and the misclassification error.
For the 2D example provided, we write the problem as follows:

min

4∑
i=1

αi −
1

2
(5α2

1 + 12α1α2 − 8α1α4 + 8α2
2 − 4α2α4 + 13α2

4) (1)

st.α1 + α2 − α3 − α4 = 0 (2)

αi ∈ [0, C] (3)

We solve using the classifier implemented in question 1 and obtain the following plots (fig. 5):

(a) C=1 (b) C=100

Figure 5: SVM for the provided example with C = 1 and C = 100

2. We test implementation on the same 2D datasets from problem 1 and obtain the following
plots (fig. 6-7):

C = 1
datasets: stdev1, stdev2, stdev4 and nonsep.

3



(a) stdev1 (b) stdev2

Figure 6: SVM for stdev1 and stdev 2 with C = 1

(a) stdev4 (b) nonsep

Figure 7: SVM for stdev4 and nonsep with C = 1

The following figures summarize the decision boundaries and error rates on train and validate
set (fig: 8-10):

Train Validate

(a) stdev2 using a Gaussian Kernel, C = 0.1,
β = 1, Error = .08

Train Validate

(b) stdev2 using a Linear Kernel, c = 0.1, Error
= .20

Figure 8

Train Validate

(a) stdev4 using a Gaussian Kernel with β = 1,
C = 0.01, Error = .22

Train Validate

(b) stdev4 using a Linear Kernel, c = 0.1, Error
= .45

Figure 9
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Train Validate

(a) Linear kernel SVM on stdev2, C = 1. Error
of .18.

Train Validate

(b) Gaussian kernel SVM with β = 0.001 and
C = 1 on stdev2. Error of .18.

Figure 10

3. a)- As C increases, the geometric margin decreases, as shown for various values of C, various
kernels, and various datasets in figure 11.(a). This always happens as C increases, because this
means there can be more slack in the final SVM, which means the SVM will be more tolerable to
incorrect classifications for inseparable data.
b)-The number of support vectors first decreases, then increases as C increases, as shown in figure
11.(b). This means that the classifier is less overfit on the training data and will have smaller errors
on the testing data.
c)- Choosing C to maximize the margin will yield a value of C equal to zero, which is the same
as having a hard-margin SVM that does not perform well on non-separable data. An alternate
criteria for choosing C could be the minimum number of support vectors (since the number of
support vectors eventually increases with a higher value of C as the classifier gets over-fit to the
training data). Changing C has almost no effect on the training error unless the data is highly
non-separable.

(a) Geometric margin as a function of C (b) Number of support vectors as a function of C

Figure 11

Problem 3.

1. First, we scale the data by substracting the mean and dividing by the standard deviation of the
train set. We scale the validate data set using the same mean and standard deviation.
Then we run the logistic regression classifier and obtain the following (table 4):
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Dataset error rate in train set error rate in validate set error rate in test set

Titanic 0.17 0.202 0.222

Table 4: table of train, validate and test error for the titanic data, using the logistic regression
classifier.

The weight vector is: ( 0.3680 0.2720 -0.5651 1.3660 -0.3941 -0.1740 0.1653 0.0950 -0.0728 0.1218
-0.0547) with a bias of -0.7705.

2. After scaling the data, we run the SVM classifier and obtain the following results for differ-
ent values of C:

C bias weight vector

0.01 0.4864 (-0.0236,-0.0494,0.0639,-0.5264,0.05271,0.02700,-0.0301,-0.0958,0.0303,-0.0346,1.25E-16)
1 0.2802 (2.15E-05,-7.05E-05,4.14E-05,-0.9622,0.0001,0.0003,-0.0001,-0.0004,-7.09E-05,1.09E-05,9.92E-05)
100 0.2805 (-0.0001,-6.9E-05,0.0001,-0.9622,3.1E-05,0.0001,-0.0003,-2.3E-06,-7.5E-07,-4.00671E-05,5.7E-05)

Table 5: table of bias and weight vector using different C on titanic data.

The following table summarizes the error rates:

C train error rate validate error rate

0.01 0.39 0.48
1 0.28 0.38
100 0.19 0.24

Table 6: table of error rates using different C on titanic data.

It seems that higher C yield lower error rates.

3. The logistic regression classifier seems to give lower error rates.
According to this classifier, the most significant feature is data.4 : sex (sex 1 is more likely to
survive).
According to the SVM classifier ( for C = 100), the most significant feature is also data.4 :sex.
It is worth mentioning that logistic regression is computationally more expensive than SVM, al-
though the classification problem (using linear separator) is roughly the same.
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