Final Year Project Report

Learning to Play Wolfenstein 3-D

Geardid Mac Ghiolla Coinnig

A thesis submitted in part fulfilment of the degree of
BSc. (Hons.) in Computer Science

Supervisor: Prof. Arthur Cater

UCD School of Computer Science
University College Dublin

March 16, 2019

Project Specification

General Information:

The goal is to develop a program able to play some early stages of the first person shooter
video game "Wolfenstein”, by learning to associate possible actions (moving in various ways,
shooting) with what is perceptible in the game at any moment. A technique that proved success-
ful in learning to play a Mario Bros level is to be applied to the new game. An existing open-source
reimplementation of Wolfenstein will need to be adapted to provide the learner with information
about what it perceives, where it is, how much ammunition it has, and how much time has elapsed.

The technique to be used for learning to play is a combination of neural network and ge-
netic programming. Input neurons correspond to the presence of visible or measurable features
(walls, enemies, power-ups, clock), and output neurons correspond to controller buttons (go
left /right/forward /back, turn left/right/upward/downward, jump, shoot). By starting with a
minimal network, adding random links from inputs to hidden nodes and onward to output nodes
or perhaps other hidden nodes, and randomly adding new hidden nodes, different behaviours are
obtained. By applying ideas of genetic algorithms, many individuals can be created and rated
in terms of how much progress they make before dying and how soon they die. Mutation of,
and crossover among, the more successful individuals of a generation leads over time to general
improvement and ultimately, it is hoped, a really excellent player.

This technique succeeded in a Mario Bros game level, using inter-neuron links that had simple
weights: excitatory or inhibitory. The Wolfenstein game has several similar characteristics, being
deterministic and possessing something that can be used as a measure of progress (in Mario, a
combination of distance from start and time taken was used but coins gathered were ignored).

Mandatory:

e Install the open-source reimplementation of Wolfenstein.

e |dentify and implement code changes necessary to determine whether the hero has died,
and if so, at what time and distance from starting.

e |dentify and implement code changes necessary to allow a program rather than a human to
control the character’s actions.

e |dentify and implement code changes necessary to allow a program to detect what is visible
to the character at any moment in play.

e Design and implement a system for linking measurements of what can be detected in several
of the floors of the first stage of Wolfenstein to activation of the player controls, using a
small randomly generated system of neurons (nodes) and links that are either excitatory or
inhibitory. (Such a system is virtually certain to die quickly.) Only small numbers of links
in to or out from any node should be permitted at this stage, a maximum of six.

e Develop a way to combine parts of one random network with parts of another.

Page 1 of [40]

Discretionary:

e Design and develop a metric for comparing the degree of success of two networks, in terms
of (large) distance travelled and (fast) time taken.

e Design and develop an evolutionary mechanism for taking a generation of several individual
networks, picking the best few, performing crossovers and occasional mutations (new hidden
nodes, wholly new links) in order to create a new generation of individuals.

e Apply this mechanism for at least 20 generations each consisting of at least 12 individuals.
Measure the performances of the best, worst and median individuals in each generation.

e Apply the entire system to a third of the levels in the first Stage of Wolfenstein.

Exceptional:

e Apply this mechanism to substantially more generations, or substantially larger generations,
or with more generous limits on in-degree and out-degree of nodes. Measure performance.

e Enrich the measure of performance, for example to reward the kills of enemies and the low
use of ammunition.

e Apply the entire system to half or more of the levels in the first Stage of Wolfenstein.

Page 2 of [40]

Abstract

Wolfenstein3D is a first person shooter MS-DOS game that was released in 1992. The goal of
the video game is to escape Castle Wolfenstein, a Nazi prison. Its creators, ID Software, released
the source code for the game in 1995, meaning it is now possible to edit the source code for our
own purpose.

The aim of the Learning to Play Wolfenstein 3-D project is to replace a human player with a
computer that progressively learns to play Wolfenstein using two Machine Learning techniques,
Genetic Algorithms and Neural Networks. These algorithms are implemented according to an
algorithm called NeuroEvolution of Augmenting Topologies (NEAT) which is based on a
paper by Kenneth Stanley and Risto Miikkulainen written in 2002 [1].

Part of the NEAT algorithm is dedicated to describing how a genetic population ought to be
represented. A Genotype represents an individual from a genetic population. Each Genotype has
a list of Genes which describes connections between Neurons in what is known as a Phenotype or
Neural Network. In this document, Genotypes will be referred to as individuals and Phenotypes
will be referred to as an individual’'s network. NEATDoop is the name given to the Al that
was created as a result of implementing the software for this project. NEATDoop contains
a population of individuals which will be used to learn to play Wolfenstein. Doop stands for
Developing Object-Oriented Program and is sometimes referred to in this document as the Al.

NEATDoop's learning will be aided by a fitness function that measures the success of an individ-
ual’s network when it was used to play Wolfenstein, which is a requirement for any project of this
nature. By using previous individuals a new, hopefully better, individual will be generated who's
network will then be used to play Wolfenstein. The end goal of this project is that NEATDoop
is a fully functioning Al that is capable of learning how to play some levels of the Wolfenstein
campaign.

Page 3 of [40]

Acknowledgments

| wish to express my sincere gratitude to the various community forum pages that have aided me
in setting up such a strong foundation for my project. These include, but are not limited, to the
DoomWorld forums, DRD team forums, StackOverflow, Wolfenstein3D Dome and the Wolf3D
haven forums.

| would like to personally thank lona Chera for providing me with information and feedback on
my initial project concepts. | would also like to thank him for outlining various ways in which |
could work with the source code for Wolfenstein.

| want to thank my fellow classmates Joe Duffin and James Keating for always finding the time
to help me with problems | have had with my project. Without their help | fear that this project
may not have been as complete as it is to date.

Finally | would like to thank my supervisor Prof. Arthur Cater. Over the past year he has
continually provided me with support and feedback on my project and | cannot thank him enough
for his time and patience.

Page 4 of [40]

Table of Contents

I Introductionl e e 7
(1.1 Why T'his Project Was Chosen| 8
(1.2 Specification Changes|. 9
(2 Background Research| 10
2.1 Game Selection| 10
[2.2 NEAT Algorithm| 11
2.3 Wolfenstein 3-D Game Mechanics| 16
(3 Project Approach| 18
[3.1 Selecting the Source Port|., 18
[3.2 Understanding the Source Code| 18
3.3 y A 20
[3.4 Examining Existing NEAT Implementations| 21
(4 Design Aspects|. e e e e e e e e e e e 22
[4.1 Understanding the NEATDoop Neural Networkl 22
4.2 Wolfenstein and NEAT Interactionl 23
5 Detailed Design and Implementation| 25
5.1 Giving NEATDoop Game Vision| 25

Page 5 of [40]

[5.2 Playing Wolfenstein with NEATDoop| 26

5.3 Speeding Up Learning| 28
5.4 Attempt Termination| 28
5.5 Calculating Distances| 29
5.6 Aiding NEATDoop's Learningl 30
5.7 Saving NEATDoop Attempts| 31
6 Testing/Evaluation|. 34
[6.1 Testing NEATDoop|. 35
[6.2 Evaluating NEATDoop| 35
[Conclusions and Future Workl. 38
[7/.1 Extending NEATDoop|, 38
[r.2 Final Conclusion| 39

Page 6 of [40]

Chapter 1: Introduction

The inspiration for this project came from a YouTube video that was published over a year ago
by a content creator named Seth / SethBling. The algorithm that Seth used to implement his
Al was based on a paper called Evolving Neural Networks through Augmented Topologies. [1]
Seth’s video describes how his Al learns to play and complete a level of Super Mario World using
a combination of two Machine Learning techniques; Neural Networks and Genetic Algorithms.

Wolfenstein3D is a first person shooter MS-DOS game that was released in 1992. The goal of
the video game is to escape Castle Wolfenstein, a Nazi prison. Its creators, ID Software, released
the source code for the game in 1995, meaning it is now possible to edit the source code for one's
own purpose.

The aim of the Learning to Play Wolfenstein project is to replace a human player with a
computer that progressively learns to play Wolfenstein using two Machine Learning techniques,
Genetic Algorithms and Neural Networks. These algorithms are implemented according to an
algorithm called NeuroEvolution of Augmenting Topologies (NEAT) which is based on a
paper by Kenneth Stanley and Risto Miikkulainen written in 2002 [I].

Part of the NEAT algorithm is dedicated to describing how a genetic population ought to be
represented. A Genotype represents an individual from a genetic population. Each Genotype has
a list of Genes which describes connections between Neurons in what is known as a Phenotype or
Neural Network. In this document, Genotypes will be referred to as individuals and Phenotypes
will be referred to as an individuals network. NEATDoop is the name given to the Al that learns
to play Wolfenstein and was created as a result of implementing the software for this project.
NEATDoop contains a population of individuals which will be used to learn to play Wolfenstein.
Doop stands for Developing Object-Oriented Program and is sometimes referred to in this
document as the Al.

NEATDoop's learning will be aided by a fitness function that measures the success of an individ-
ual’s network when it was used to play Wolfenstein, which is a requirement for any project of this
nature. By using previous individuals a new, hopefully better, individual will be generated who's
network will then be used to play Wolfenstein. The end goal of this project is that NEATDoop
is a fully functioning Al that is capable of learning how to play some levels of the Wolfenstein
campaign.

Super Mario World is a mostly linear game, but by no means simple in terms of gameplay. You
travel left and right on the screen to get to a particular point or objective on the map. There
are points in Super Mario World's gameplay where the player needs to kill enemies, jump over
obstacles or go down tubes to get to other parts of the map. The plan for NEATDoop is to
extend the approach taken for Seth’s Al and to introduce its concepts to a more complex game.
Doing this will involve creating a more complex fitness function than was used for Seth's Al to
better model the requirements of Wolfenstein.

This document details the approach taken in order to complete the Learning to Play Wolfenstein
project specifications. Each chapter of this document introduces several topics, each of which are
discussed in detail.

Chapter 2 will outline all the background research that was done for this project. Here, the process
of selecting the game for this project will be talked about. An in-depth overview of the NEAT
algorithm will be provided as well as definitions for Neural Networks and Genetic Algorithms in

Page 7 of [40]

general, and finally Wolfenstein's game mechanics will be briefly discussed.

Chapter[3] provides information on how the project was initially approached. This involved deciding
what language to use for this project by selecting from different language reimplementations
of the original Wolfenstein source code. Various important source files that were identified in
Wolfenstein's source code will then be documented and other NEAT algorithm implementations
that were used to aid in programming NEATDoop will be explained. It will also argue why the
NEAT algorithm is well suited for this type of project.

Chapter [4 will explain how the NEATDoop's Neural Network works and concludes with an expla-
nation of the interaction between the NEAT algorithm and the Wolfenstein source code.

Chapter [5] provides in-depth documentation and explanations for how core components of NEAT-
Doop were implemented. It describes how the NEATDoop’s surroundings are represented, how
it learns to play the game, attempts that were made to try and speed up gameplay and what
stopping conditions are used to stop networks from playing Wolfenstein when they do nothing
useful. It will also explain how distances are calculated for the project’s fitness function, what
the final fitness function is and finally shows how learnt networks are stored and reloaded so that
they can be replayed.

Chapter [6] is dedicated to testing and evaluations that were done for the Learning to Play
Wolfenstein project. It will provide an analysis of the fitness functions used over the course of
the project time frame, the testing that was done with NEATDoop and ends with an evaluation
of NEATDoop.

The last chapter, Chapter [7] will provide some future work that could be done with this project
and how certain components that were implemented might be changed. It will also provide a final
conclusion for the Learning to Play Wolfenstein project.

1.1 Why This Project Was Chosen

Using Neural Networks to aid learning in systems has been of interest for a long time although, in
practice, they have only recently become feasible (in the past twenty years or so) to use primarily
because of how much computational time they require. Modern advancements in technology have
made the use of Neural Networks to solve complex problems more and more possible.

At first, | thought that the best approach for developing an Al capable of playing a game would
be to implement a rule-based system where the Al reacts deterministically to its surroundings.
However, using an algorithm like NEAT allows an Al to learn this behaviour itself and is far more
interesting both to implement and to watch.

Having the opportunity to use machine learning techniques that have revolutionised problem
solving in the industry as well as being able to incorporate it into an area of computer science
that | am very fond of was particularly appealing and is the reason why | proposed this project.

Page 8 of [40]

1.2 Specification Changes

Initially, part of this project’s specifications was to create an Al capable of completing dozens of
levels within the Wolfenstein campaign. Two parts of the initial specification have now changed
with the agreement of my project supervisor, to the below.

e Discretionary:
Old: Apply the entire system to all floors of the second stage of Wolfenstein
New: Apply the entire system to a third of the levels in the first Stage of Wolfenstein.

e Exceptional:
Old: Apply the entire system to some or all the floors of the second, and perhaps third,
stage of Wolfenstein
New: Apply the entire system to half or more of the levels in the first Stage of Wolfenstein.

The changes to the specifications were primarily due to the fact that it takes a considerable
amount of time for NEATDoop to learn how to play just parts of a level and so letting it complete
several levels was deemed impractical. As things stand, however, neither of the modified goals
have been achieved, since the learning time required is even greater than had been feared.

Page 9 of [40]

Chapter 2: Background Research

This chapter will outline in detail the discoveries that were made whilst researching numerous
relevant topics of interest to the Learning to Play Wolfenstein project. The first item that will
be discussed will describe how the game for this project was selected; what caused Wolfenstein
to be chosen over previously considered open-source games, such as Doom and Duke Nukem.
However, the main topic of discussion in this chapter will be the NeuroEvolution of Augmenting
Topologies(NEAT) algorithm; what it is and why it will be of major importance to NEATDoop's
ability to learn.

2.1 Game Selection

In order for an Al to be able to learn to play Wolfenstein it will need to be able to make decisions
based on what it can see at any point in time. This would not easily be done with a game whose
source code was not open source since information could not be read directly from the source
code to determine its surroundings.

The first open source game that was considered for this project was Duke Nukem 3D. It was
released early 1996 and was developed by 3D Realms. The game was discovered having read an
analysis of the game's source code on a web-blog early into the specification for this project. [2]

The author of the web-blog recommended that | do not use Duke Nukem 3D due to its rotten
codebase. [3] From inspection of an open source reimplementation of the source code called
Chocolate Duke Nukem 3D the author's recommendation seemed well founded. The source
code contains approximately 70,000 lines of code and is very, very sparingly documented. By
comparing the game.c source file from Duke Nukem 3D and the WL_GAME.c source file from
Wolfenstein it is now very clear that not choosing Duke Nukem 3D was a solid decision. Both
of these source files implement logic that sets up levels, constructs in game text, displays player
health statistics and includes logic that is fundamental to the main game loop. WL_GAME.c
from Wolfenstein's source code contains approximately 1,600 lines of code whereas game.c from
Duke Nukem 3D's source code alone roughly contains 11,000 lines of code with no substantial
documentation indicating how the source file works. [4][5]

The Original Doom was then considered as it was recommended by the author of the previously
mentioned web-blog. A software developer who created a reimplementation of the Doom source
port called AutoDoom recommended that Wolfenstein 3D be considered for this project as op-
posed to Doom due to the fact that Doom's level design is a lot more complex than Wolfenstein's.
This is evident from any gameplay showcasing the games. [6]

Doom allows for players to move in the vertical axis. This extra dimension that a player can
move in would have been a huge roadblock in NEATDoop's ability to learn. Wolfenstein's map
design is completely flat i.e. the player cannot move in the vertical axis. A worst case scenario
for NEATDoop playing Wolfenstein is that it gets stuck in a corner or runs in a circle. Not only
would this be a concern in Doom but there exists a probability that NEATDoop would get stuck
behind a staircase or similar. The fitness function for Doom would also have to take into account
the extra axis which would have resulted in an even more complex measure of fitness.

Page 10 of [40]

As a result of the outlined problems, Wolfenstein was chosen for this project because the source
code is well documented. As well as this, the source code, whilst still containing approximately
45,000 lines of code, is easy to navigate and understand. The source code that was chosen is
actually not the original one that was written in C but a reimplementation written in C++ called
Wolf4SDL. [7] The main reason behind this choice was so any code written to interact with
the Wolfenstein source code could be object oriented. Further reasons will be discussed later in
Chapter 3]

2.2 NEAT Algorithm

NEAT stands for Neuro-Evolution of Augmenting Topologies and is based on an paper by
Kenneth Stanley and Risto Miikkulainen [I]. The paper demonstrates the ability for the NEAT al-
gorithm to solve problems in quicker succession than other types of topology evolving algorithms,
such as Topology and Weight Evolving Artificial Neural Networks (TWEANN) algorithms [8].
The NEAT algorithm consists of two very important Machine Learning techniques, Neural Net-
works and Genetic Algorithms.

2.2.1 NEAT Neural Networks

Neural Networks(NN) are a Machine Learning technique that roughly simulate the behaviour of a
brain. They consist of artificial Neurons that are connected using artificial Synapses. The synapses
in a NN typically have a weight associated with them that describes how strong a connection any
two Neurons have with each other. [9]

In traditional Neuro-evolution techniques, a topology is chosen before any experimentation begins.
This topology is normally maximally connected, meaning that every Neuron in the input layer is
connected to every Neuron in the output layer. If the topology has an intermediate layer, known
as a hidden layer, then the input layer is instead maximally connected to it, and it is then
maximally connected to the output layer. This network then receives inputs to be processed
which are propagated through the network starting from the input layer until, ultimately, reaching
the output layer where a result is produced.

This network is then modified by means of mutating the weights on the links of the network using
evolutionary techniques such as genetic algorithms. The goal of this type of neuro-evolution is
therefore to optimise the weight matrix associated with the network.

In order to determine what Neurons are active at any point during network analysis, an activa-
tion function is used. As stated in NEAT [I], a modified Sigmoidal transfer function is used,
o(zr) = Heﬁ This is not the standard Sigmoidal function used in traditional neuro-evolution
techniques due to its use of a coefficient. This coefficient causes activations to be close to linear
at the Sigmoid's steepest ascent between -0.5 and 0.5 resulting in more possibilities for fine-tuning
at the extremes of the modified sigmoid function, since it does not plateau as fast as a standard
sigmoid.

The weights between Neurons are not the only aspect of a Neural Network that contribute to
their behaviour. The structure of a neural network also affects its functionality. The NEAT al-
gorithm is primarily focused on this aspect of neuroevolution. It extends and tries to improve

Page 11 of [40]

Figure 2.1: Modified Sigmoidal activation function used for NEAT algorithm

on some popular techniques utilised by some TWEANNSs. The two main ideas it introduces are
the Speciation of a population and using Innovation Numbers on network encodings so that
the historical origins of each network can be tracked. These concepts try to counter some of the
common issues with typical TWEANNSs. [10]

NEAT Encoding

Typical neural networks consist of Neurons (nodes) connected using Synapses (links). NEAT
describes its networks using a type of direct encoding whereby each network is represented using
a series of Genes. Each Gene indicates two Neurons that are connected, whether or not the link
is enabled, a weight and an innovation number that is unique to each Gene. This innovation
number is used to calculate similarities between networks.

Genome (Genotype)

Connect. | In 1 In 2 In 3 In 2 In 5 In 1 In 4

Genes out 4 out 4 out 4 out 5 out 4 Oout 5 out 5
Weight 0.7 |Weight-0.5 |Weight 0.5 |Weight 0.2 |Weight 0.4 | Weight 0.6] Weight 0.6
Enabled DISABLED Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11

A

Network (Phenotype) 4

Figure 2.2: Shows a mapping from an individual (Genotype) to a network (Phenotype).
Fig 2.2 is taken directly from the NEAT paper [I] and indicates how an individual's Genes map
to a network. Notice that the innovation numbers associated with each Gene in this network are

not increasing uniformly. This is an example where Genes would have been added to another
individual before the last Gene in this individual was added.

NEAT Speciation

Many problems arise when experimenting with networks that involve modifying the structure of
the network as well as the weights on links in order to produce better offspring. One such problem

Page 12 of [40]

is that, in many cases, modifying a network causes an initial decrease in an individual's fitness.
As a result, the topological innovation is very unlikely to make it through to the next generation
where it has the potential to be improved.

In order to counter the above problem, the NEAT algorithm uses Speciation on its population.
This is done by grouping individuals by their networks if they share similar enough genetic history.

Parentl Parent2
1 2 3 4 5 8 1 2 3 4 5 6 7 9 10
1->4 [2->4 | 3->4 | 2->5 | 5->4| 1->5 1->4 | 2->4 | 3—>4|2->5|5->4 | 5->6(6->4| 3->5| 1->6
IDISAB IDISAB! IDISA

disjoint

Parentl| 154 [2-54 | 3-54 | 2-55 | 5->4 1-55

1 2 3 4 5 3 7 9 10
1->4 [2->4 | 3—>4| 2->5 [5->4 | 5->6| 6—>4 3->5| 1->6
IDISAB] DISABl

Parent2

disjointdisjoint eXcess excess

Figure 2.3: Shows a comparison of the Genes in two different individuals.

The bottom portion of Figure 2.3 shows how comparing genetic history between two individuals
might work. The Genes that appear in both individuals are lined up. These Genes are referred
to as Matching Genes. Any Genes that do not match are considered to either be Disjoint or
Excess depending on whether the mismatch appears in the middle of the comparison or at the
end. Calculating Gene similarities between two individuals will be important when performing
crossovers, which will be discussed in the next section.

There are a number of implications of Speciation. Firstly, structural innovations have a better
chance of making it through to the next generation where they can be further improved. Secondly,
it reduces the chances of a single individual dominating the entire population.

Speciation is a concept that most TWEANNSs do not employ, as indicated in the NEAT paper.
Innovative structures in TWEANNSs tend to have more connections and as such take far longer to
improve than simpler ones. The result of this is that innovative structures in TWEANNS cannot
compete with simpler ones.

2.2.2 NEAT Genetic Algorithms

Genetic Algorithms(GA) are a set of rules that try to describe how simulated evolution might work
with an artificial population. The population consists of a set of individuals that are to be subject
to these rules of evolution. The individuals are evaluated and their relative success measured
according to some Fitness Function. Crossovers are then performed by combining aspects of
two parent individuals to create a new child individual. Individuals are then mutated by making
small random changes to them in order to add genetic diversity to the population. Depending
on the implementation, a number of individuals are then moved forward to the next generation
where the same rules are applied to the new, modified population. This process is repeated until
a terminal condition is met. In the case of this project the terminal condition will ultimately be
NEATDoop completing a level.

Page 13 of [40]

The GA used for NEAT is a variation of these standard rules, since the population is speciated /
sub-divided the rules are altered slightly.

1. Initialisation: As was mentioned in Subsection the population in the NEAT algo-
rithm is Speciated / sub-divided so that clusters of similar individuals are created. This is
how the population in NEAT is created. Each individual starts with a network that is min-
imally connected, meaning that there is no hidden layer initially; only an input and output
layer, which may have some connections as a mutation is applied to each initial network.

2. Evaluation: This step involves taking each network in the population and feeding it inputs
in order to produce some output. The fitness or success of the network is then calculated
according to some fitness function which is used as a measure for comparison between
networks.

As stated in NEAT [I], explicit fitness sharing is used between the individuals of a particular
niche. This value is assigned the fitness of the highest performing individual in that niche.
It does this so that no single niche or Species, as they are also called, can take over the
entire population even if all of its members are high performing.

3. Selection: Once all the individuals in the population have been evaluated, niches / species
reproduce by first eliminating the lowest performing individuals and then the entire popula-
tion is replaced by the offspring of the remaining individuals in each niche / species.

In the implementation for this project, only the best individual per species is actually brought
forward to the next generation. Since all individuals in a species are either equal in perfor-
mance or worse than the current best performer, removing the weak individuals creates a
higher chance that new ones generated will perform better than the current best.

4. Crossover: Crossover produces new offspring for the next generation by taking two parent
individuals from the same species and combining aspects of them to produce a child. The
parent individuals always come from the same species since the networks of each are similar
enough for this crossover to work properly.

If the networks were not similar then too many disjoint and excess Genes would be used in
the child causing the genetic history shared to become tainted.

5. Mutation: In order to introduce genetic diversity within the population, mutations are
performed on the population. Types of mutations include:
e NEAT topological modifications (Discussed in the next section)
e Enabling / disabling existing links in a network
e Modifying an individual's mutation rates

6. Repeat process until terminal condition met

2.2.3 NEAT Topological Mutations

NEAT specifies two types of topological / network mutations [1], Node insertion mutations and
Link insertion mutations. Both of these mutations add new connection Genes to an individual
and each new Gene is assigned a new, unique Innovation Number.

e Link insertion mutation: In a link insertion mutation a new connection Gene is added
to the individual, specifying an in-neuron and out-neuron. Both of these neurons are chosen
randomly from the individual's pool of existing neurons. If a link already exists between
these two neurons then no new link is added. Fig 2.4 shows that the neurons selected were
3 and 5 in this case.

Page 14 of [40]

112]3 4 516 1213 4 516 7
| —>4 P—>4 [3—>4[2—>5[5—>4|1—>5| ||—>4 p—>4|3—>4[2—>5[5—>4 [|—>5[3—>5
DIS DIS

Mutate Add Link

>
1 2
1 {2 (|3 4 516 1|2 |3 4 5168 9
| —>4 P—>4|3—>4{2—>5|5—>4[1—>5| ||—>4 p—>4[3—>4|2—>5]5—>4[1—>5|3—>6|6—>4
DIS DIS | DIS
Mutate Add Node 4

>

Figure 2.4: Shows an individual's network before and after NEAT Link and Node insertion
mutations.

e Node insertion mutation: A node insertion mutation involves randomly selecting a
Gene from an individual. This Gene is then set to be disabled, meaning there is no longer a
direct connection between the Gene's in-neuron and out-neuron. Fig 2.4 above shows the
Gene selected has 3 as its in-neuron and 4 as its out-neuron.

Once the selected Gene is disabled, two new connection Genes are created and added to
the individual. Notice that the numbers at the top of the displayed diagrams are actually
the innovation numbers on each connection Gene. The innovation numbers assigned to the
new Genes in the node insertion mutation assume that the link insertion mutation happened
first to some other network, which is why the first Gene here has an innovation of eight and
not seven.

— The first Gene has the old in-neuron as its in-neuron and the newly added neuron as
its out-neuron (3 -> 6)

— The second Gene has the newly added neuron as its in-neuron and the old out-neuron
as its out-neuron. (6 -> 4)

2.2.4 NEAT Individual Mutations

NEAT also mutates various aspects of individuals. Below, a brief description of these mutations
are given:

e Enable / Disable Mutation: In this mutation, there is a chance that a random enabled
/ disabled Gene from an individual is chosen and its state flipped, meaning if the Gene
selected is currently enabled it is disabled, and vice versa.

e Weight Mutation: This mutation causes a random Gene from an individual to be selected
and its weight mutated.

e Mutation Rate Alterations: Every individual in the population has a certain chance of
performing any of the previously mentioned mutations. These mutation rates can also be
mutated.

Page 15 of [40]

2.3 Wolfenstein 3-D Game Mechanics

By the very nature of this project it is of high importance to be able to understand the source
code of the game in order to determine what information can and cannot be used for NEAT-
Doop's learning. This section will introduce how Wolfenstein's gameplay works and also give a
brief description of some parts of the source code where attention was focused early on. The
purpose of reading the source code at this stage was to understand how the Wolfenstein map
is represented and how objects, such as enemies and pickups, are tracked throughout gameplay.
These components will form an important base for the NEAT algorithm which is discussed after
this section.

2.3.1 Wolfenstein’s Gameplay

Wolfenstein is a First-Person Shooter(FPS) and the goal of each level is to get to an elevator
tile that brings the character to the next level. A player reaches the end of each level by moving
through a series of rooms in the game, potentially killing enemies and picking up items such as
health, ammo, treasure or new guns as it does so.

Depending on the difficulty selected, a variety of enemies will spawn in the game. These enemies
will attempt to kill the player on sight. The player is equipped with a low-power pistol and a knife
by default, although it is possible to pick up a sub-machine gun or a chain gun in various levels
that offers a higher damage output than the pistol.

Damage is done on a distance basis. The closer you are to an enemy when you hit them, the
more damage that is inflicted. This also applies to enemies, the closer they are to you the more
damage they do when they hit you.

Enemies react to sound. On hearing a gunshot, an enemy will move in the direction of the
gunshot. This will be the cause of a substantial amount of deaths in NEATDoop's learning where
it shoots randomly and attracts enemies that ultimately, kill it.

Wolfenstein is a mostly deterministic game. Enemies and items that can be picked up, always
spawn in the same location. However, enemy movements are not deterministic and can cause
network replays to behave slightly differently.

2.3.2 Map Representation

Every map in Wolfenstein is represented as a 64x64 grid of tiles. It holds Byte values indicating
the type of structure located at that (x,y) co-ordinate. If the Byte value at a particular (x,y)
co-ordinate is greater than 0, then it can either be a wall, push-wall, door or an elevator tile (which
is the tile associated with the end of the current level). If the value at any (x,y) co-ordinate is 0
then it represents a plain tile that a player can walk on.

This particular information is vitally important for determining the structural surroundings of
NEATDoop during gameplay. From this 2 dimensional array of bytes it is possible to get the
spawn location in each level, the end location in each level and all wall, door and push-wall data
that will be used primarily as input to the neural networks of the population.

The elevator tile is a particularly important tile. On this tile a button is located that, when
pressed by the player, ends the current level. Reaching the elevator tile indicates that the Al
(NEATDoop) will have managed to learn to play a level of Wolfenstein. The co-ordinates of this

Page 16 of [40]

tile position will be used later in the fitness function as will the spawn co-ordinates.

2.3.3 Enemy/ltem Representation

Both enemies and items that can be picked up are represented as structs within the source code.

So called Actors, represent enemies and the player of the game. The struct storing their infor-
mation is named objstruct and contains information about the position of the Actor in the map,
the health the Actor has, the sprite image assigned to it and references to the next and previous
objstruct etc. A list of objstructs is maintained with the name objlist which stores all Actors
currently alive on the map.

ltems that can be picked up include things like guns, ammo, health and treasure. These are
considered to be static items in the Wolfenstein Engine since they do not move. However,
other items such as chairs, tables and statues are also considered to be static. The struct that
represents these static objects is called statstruct and a list maintaining references to all static
items currently on the map is called statobjlist.

Identifying static items of interest is simple since each static item has a label associated with it.
For instance, ammo has a bo_clip label associated with it so it is possible to iterate through the
statobjlist array and find items that would be considered useful for NEATDoop to pickup.

This chapter provided an overview of the work that was done early into the project timeline. The
NEAT algorithm was introduced which will be core to NEATDoop's ability to learn. Finally, having
come to a decision on which game to use, the next natural step was to gain some insight into
how the most important information is represented as well as understanding how the mechanics
for the game work so that some factors from it could be used later on when designing the fitness
function.

Page 17 of [40]

Chapter 3: Project Approach

The previous chapter introduced the game that was used for this project and outlined the NEAT
algorithm, which is at the very core of this project. This chapter will introduce the reimplemen-
tation of the original Wolfenstein source code used throughout the project, describe the methods
employed in order to identify and understand the most important source files from the Wolfenstein
source code and the importance of reading other adaptations of the NEAT algorithm.

3.1 Selecting the Source Port

Wolfenstein 3-D was originally written in a combination of the C and Assembly languages. Very
early on in this project it was desired to find another adaptation of the Wolfenstein source so that
integrating the NEAT algorithm into the source code would not involve writing in either of these
languages. This was primarily because the NEAT algorithm is much easier to understand if it is
implemented in an Object-Oriented language such as C++. As such, a source code adaptation
implemented in C4++ was sought after.

Initially, the original source code was used. This involved using a compiler known as Borland
C++ v3.1, which is an old, outdated piece of software, in order to compile the source code. The
Borland compiler is a 16-bit compiler requiring it to be run within DosBox, since it is not possible
to run the compiler nati