1. We will prove by induction on n

INDUCTION HYPOTHESIS: assume that the claim is true when $n=k$, In other words, we assume that $\sum_{i=1}^{n}\left\lfloor\frac{i}{2}\right\rfloor=\left\lfloor\frac{k^{2}}{4}\right\rfloor$

BASE CASE: $\mathrm{k}=1$
$\left\lfloor\frac{1}{2}\right\rfloor=\left\lfloor\frac{1^{2}}{4}\right\rfloor$
$0=0$ thus the claim is true for the base case.

INDUCTION STATEMENT: $\mathrm{n}=\mathrm{k}+1$
$\left\lfloor\frac{k^{2}}{4}\right\rfloor+\left\lfloor\frac{k+1}{2}\right\rfloor=\left\lfloor\frac{(k+1)^{2}}{4}\right\rfloor$

Now we can have two cases: k is either odd or k is even

Case 1: k is even, thus k can be written as $2 q$
$\left\lfloor\frac{k^{2}}{4}\right\rfloor=\left\lfloor\frac{4 q^{2}}{4}\right\rfloor=q^{2}$
$\left\lfloor\frac{k+1}{2}\right\rfloor=\left\lfloor\frac{2 q+1}{2}\right\rfloor=\left\lfloor q+\frac{1}{2}\right\rfloor=q$
$\left\lfloor\frac{(k+1)^{2}}{4}\right\rfloor=\left\lfloor\frac{(2 q+1)^{2}}{4}\right\rfloor=\left\lfloor\frac{\left(4 q^{2}+4 q+1\right.}{4}\right\rfloor=q^{2}+q$

Thus by equating the two sides again we have $q^{2}+q=q^{2}+q$ and the claim is true when k is even.

Case 2: k is odd, thus k can be written as $2 q+1$
$\left\lfloor\frac{k^{2}}{4}\right\rfloor=\left\lfloor\frac{(2 q+1)^{2}}{4}\right\rfloor=\left\lfloor\frac{4 q^{2}+4 q+1}{4}\right\rfloor=q^{2}+q$
$\left\lfloor\frac{k+1}{2}\right\rfloor=\left\lfloor\frac{2 q+2}{2}\right\rfloor=q+1$
$\left\lfloor\frac{(k+1)^{2}}{4}\right\rfloor=\left\lfloor\frac{(2 q+2)^{2}}{4}\right\rfloor=\left\lfloor\frac{\left(4 q^{2}+8 q+4\right.}{4}\right\rfloor=q^{2}+2 q+1$

Thus by equating the two sides again we have
$q^{2}+q+q+1=q^{2}+2 q+1$ and the claim is true when k is odd.

Thus the claim is always true.
2. Proof by induction on n

BC: $\mathrm{n}=1$
we can produce 1 by using the second fibonnaci number of $1 . \mathrm{IH}$: assume the claim is true for all natural numbers $\leq k$
IS: Now we want to prove that the claim is true when $n=k+1$.
Consider the largest fibonnaci number less thank $\mathrm{k}+1$ called f_{1}.
We know that $f_{1}+f_{i+1}=f_{2}>k+1$ which implies that $k+1-f_{1}<f_{i-1}$
Now since, we already assumed in the induction hypothesis that we can produce any natural number less than k using the sum of distint, non consecutive fibonnaci numbers, this implies that $k+1-f_{i-1}$ falls under the induction hypothesis and satisfies the constraint that they cannot be consecutive because f_{i-1} is not used. THus we have proven the claim
3. we will prove by induction on n

Base Case: $\mathrm{n}=2$ we have two questions: 1) is there a direct road from $A \rightarrow B$? 2) is there a
direct road from $B \rightarrow A$? thus we have $\leq 3(n-1)=3$ questions
IH: assume that the claim is true for n cities, we want to prove that it is true for $n+1$ cities. IS: Now when we have $n+1$ cities, we remove one and now we have n cities. It is assumed that we can solve the problem with ($3 n-1$) questions, so when we add a city, we now get $3(\mathrm{n}+1-1)$ $=3 \mathrm{n}$ questions questions. But we have already assumed that we know whether there is a deadend city or not so we must split it up into cases.

Case 1: Dead end city D existed for n cities, meaing there are ($n-1$) cities besies D and our newly added city ($\mathrm{n}+1$) called X . So besides D , there are n cities now.
Questions: 1) is there a road going from D to A ? if yes, D is not a Deadend. if no, D is still Deadend. 2) if yes, then we must ask if there is a road going from A to D. if yes, there is no deadend, if no, A could be dead end, but we must test this for (n-1) cities and therefore we must ask a total of ($\mathrm{n}-1$) questions that ask is there a road from A to C for all cities C . Total amount of questions asked in Case 1 is ($\mathrm{n}+1$).

Case 2: There is no deadend
A could be deadend, but we have to ask n questions: Is there a road from A to C for all cities C, but we already ask this in Case 1. So we can determine if there is a new city in under $3(\mathrm{n}-1)$ questions thus proving the claim.
4. $\frac{15}{56}$

The sample space consists of all the series ending in 4 games plus all the games ending in 5 , 6 , and 7 . This can be represente as $\binom{4}{4}+\binom{5}{4}+\binom{6}{4}+\binom{7}{4}=56$ but we must multiply by 2 to include those scenarios in which either teams win. Now to find the probability of a team winning in 6 games we need to do $\frac{2 *\binom{6}{4}}{112}$ which equals $\frac{15}{56}$
5. the probability that you can go from A to C is determined by the probability of going from A to C directly plus the probability of going from A to C through B .
$\mathrm{p}[\mathrm{A}$ to C$]=(1-p)$
$\mathrm{p}[\mathrm{A}$ to B to C$]=(1-p)(1-p)$ so we just add the two together to get
$\mathrm{p}[\mathrm{A}$ to C$]=(1-p)+(1-p)^{2}$
6. The sample space $=100,000$ numbers. Now to find out how many numbers would yield us a number divisible by 4,6 , or 9 , we must use the principle of inclusion and exclusion. $\frac{100,000}{4}+\frac{100,000}{6}+\frac{100,000}{9}-\frac{100,000}{24}-\frac{100,000}{54}-\frac{100,000}{36}+\frac{100,000}{216}=\frac{44445}{100000}$

