Group Isomorphisms

Srishti Patel(Roll no 23)

Delhi Technological University

October 2019

A (1) > A (2) > A

Definition

An isomorphism Φ from a group G to a group G' is one-one ,onto mapping that preseves the group operation, i.e $\Phi(xy) = \Phi(x) \cdot \Phi(y)$

Notation: If G is isomorphic to G' then we denote it by $G \cong G'$

→ ∃ →

Examples of Isomorphisms I

- Let G = (ℝ, +) and G' = (ℝ⁺, ·) be two groups then Φ : G → G' as Φ(x) = 2^x is an isomorphism
 Φ is one-one -Let Φ(x) = Φ(y) ⇒ 2^x = 2^y ⇒ 2^{x-y} = 1 ⇒ x - y = 0 ⇒ x = y
 Φ is onto -Let y ∈ ℝ⁺, then ∃x = log₂ y such that Φ(x) = 2^x = 2^{log₂ y} = y therefore, Φ is onto
 Φ is homomorphism -
 - $\Phi(x+y) = 2^{x+y} = 2^x \cdot 2^y = \Phi(x)\Phi(y)$

therefore Φ is an isomorphism.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Examples of Isomorphisms II

• • • • • • • • • • • •

Examples of Isomorphisms III

Let G = {1, ω, ω²}, the group of cube roots of unity and G' = {R₀, R₁, R₂} the group of rotations in the plane through 0°,120° and 240° respectively. The mapping θ : G → G' given by θ(1) = R₀, θ(ω) = R₁ and θ(ω²) = R₂ defines an isomorphism of G onto G'.

Properties of isomorphism I

Let $\theta: G \to G'$ be an isomorphism of G onto G'.Let e and e' be the identity elements of G and G' respectively.Then

.

Properties of isomorphism II

 $= [\theta(a)]^n$

A D N A B N A B N A B N

Theorems I

Theorem

Let G and G' be isomorphic. If G is abelian , so is G'

Proof:

Let $\theta: G \to G'$ be isomorphism of G onto G'.Let $a', b' \in G'$.Since θ is onto ,there exists $a \in G$ and $b \in G$ such that $\theta(a) = a'$ and $\theta(b) = b'$.Now $a' \cdot b' = \theta(a) \cdot \theta(b) = \theta(ab) = \theta(ba)$ (Since G is abelian)= $\theta(b) \cdot \theta(a) = b'a'$. Thus G' is abelian.

Remark 1: The above theoram is also true if θ is an onto homomorphism. **Remark 2:** If G is abelian and G' is non abelian then G and G' cannot be isomorphic.

Theorem

Any infinite cyclic group is isomorphic to Z and any finite cyclic group of order n is isomorphic to Z_n

イロト 不得下 イヨト イヨ

Theorems II

Proof:

Case1: Let $G = \langle a \rangle$ be an infinite cyclic group. Define $f : Z \to G$ given by $f(n) = a^n$ then $f(m+n) = a^{m+n} = a^m \cdot a^n = f(m) \cdot f(n)$.

Therefore f is homomorphism.Since all the powers are distinct in G therefore f is one-one.By definition it is onto .

Hence $G \cong Z$

Case 2: Let G be a finite cyclic group of order n. $G = \langle a \rangle$ such that 0(a) = n. Let $f : Z_n \to G$ is defined by $f(k') = a^k$ f is well defined. $l' + m' = k' \Leftrightarrow l + m \equiv k(modn)where 0 \leq k \leq n - 1$ $\Leftrightarrow (l + m - k) \mid n \Leftrightarrow (l + m - k) = np \Leftrightarrow a^{l+m-np} = a^k$ $\Leftrightarrow a^{l+m} . (a^n)^{-p} = a^k \Leftrightarrow a^{l+m} = a^k$ $f(l' + m') = f(k') = a^k = a^{l+m} = a^l . a^m = f(l').f(m')$ f is homomorphism.

$$l' \neq m' \Rightarrow l \neq m \Rightarrow a' \neq a^m \Rightarrow f(l') \neq f(m')$$

Therefore f is one-one. Clearly f is onto hence f is an isomorphism $G \cong Z_n$

< □ > < □ > < □ > < □ > < □ > < □ >

Theorems III

Corollary1

Any two cyclic groups of the same order are isomorphic

Proof: Case 1:Let G and G' be finite cyclic groups of order n ,then $G \cong Z_n$ and $G' \cong Z_n$ (by the above theorem)therefore, $G \cong G'$ **Case 2:** Let G and G' be infinite cyclic groups.By previous theorem $G \cong Z$ and $G' \cong Z$ therefore, $G \cong G'$

Remark

For each prime p,there exists only one group(upto isomorphism) of order p i.e the cyclic group of order p

.

First theorem of Isomorphism

Theorem

Let $f : G \to G'$ be a homomorphism of G onto G'and kernel of f is K then • K is normal in G • $\frac{G}{K} \cong G'$

Proof: Let $f': \frac{G}{K} \to G'$ be defined as f'(aK) = f(a) for $a \in G$ Let $aK = bK \Leftrightarrow a^{-1}b \in K \Leftrightarrow f(a^{-1}b) = e' \Leftrightarrow f(a^{-1}) \cdot f(b) = e'$ $\Leftrightarrow f(a^{-1}) \cdot f(b) = e' \Leftrightarrow f(a) = f(b) \Leftrightarrow f'(aK) = f'(bK)$ Therefore f is well defined and one-one Since f is onto hence f' is also onto f'(aKbK) = f'(abK) = f(ab) = f(a).(b) = f'(aK).f'(bK)Therefore f' is homomorphism and since f' is one-one and onto as well hence f is isomorphism

$$\frac{G}{K}\cong G'$$

(人間) トイヨト イヨト ニヨ

Lemma

Let $f: G \to G'$ be a homomorphism then,

- if H < G ,then f(H) = H' < G'
- if H is normal in G anf f is onto then H' is normal in G'

• if
$$H' < G' \Rightarrow f^{-1}(H') = H < G$$

• if H' is normal in G' \Rightarrow H is normal in G ,further if f is onto then $\frac{G}{H}\cong\frac{G'}{H'}$

• • = • • =

Second Theorem of Isomorphism

Theorem

Let H and K be normal in G such that $K \subset H$ then

• $\frac{H}{K} \triangleleft \frac{G}{K}$ • $\frac{G/K}{H/K} \cong \frac{G}{H}$

Proof: Consider the projection map

$$p: G
ightarrow rac{G}{K} = G'$$

by p(a) = aK where $a \in G$. Since H is normal in G, $p(H) = \frac{H}{K} = H'$ Consider

$$G/K = \{aK | a \in G\}$$
$$H/K = \{aK | a \in H\}$$
$$H' \triangleleft G'$$

also from previous lemma, we have $\frac{G'}{H'} \cong \frac{G}{H}$ that is $\frac{G/K}{H/K} \cong \frac{G}{H}$

Third theorem of Isomorphism I

Theorem

Let H, K < G with K is normal in G

- $H \cap K$ is normal in H
- $\frac{H}{H \cap K} \cong \frac{HK}{K}$

Proof: Since K is normal in G and $K \leq G$ therefore HK is a subgroup of $G \Rightarrow HK = KH$.

As K is normal in G and $HK \leq G$ thus K is normal in $HK \Rightarrow \frac{HK}{K}$ well defined.

Also $H \cap K$ is normal in H.

Let $x \in H \cap K$

 $\Rightarrow x \in H$ and $x \in K$, since $h \in H$ therefore $hxh^{-1} \in H$

also since K is normal in G and $x \in K$ therefore $hxh^{-1} \in K$ and hence $hxh^{-1} \in H \cap K$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Third theorem of Isomorphism II

.

define
$$f : H \to \frac{HK}{K}$$
 by
 $f(a) = aK$
then $xK \in \frac{HK}{K}$ then $xK = (hk)K = hK = f(H)$ (for some $h \in H$ and
 $k \in K$)
Therefore f is onto

$$f(ab) = abK = aK.bK = f(a).f(b)$$

f is a homomorphism $Kerf = \{a \in H | f(a) = K\} = \{a \in H | aK = K\}$ = $\{a \in H | a \in K\} = H \cap K$ From first isomorphism theorem we have

$$\frac{H}{H \cap K} \cong \frac{HK}{K}$$

.

Questions I

Question 1

Show that < Q, + > cannot be isomorphic to $< Q^*, \cdot >$ where $Q^* = Q - \{0\}$

Solution: Suppose f is an isomorphism from Q to Q^* . Then $2 \in Q^*$, f is onto therefore, $\exists \alpha \in <Q^*>$, s.t. $f(\alpha) = 2$

$$\Rightarrow f(\frac{\alpha}{2} + \frac{\alpha}{2}) = 2$$
$$\Rightarrow f(\frac{\alpha}{2}) \cdot f(\frac{\alpha}{2}) = 2$$

 $\Rightarrow x^2 = 2$ where $x = f(\frac{\alpha}{2}) \in Q^*$

But that is a contradiction as there is no rational number x such that $x^2 = 2$. Hence the result follows

< □ > < □ > < □ > < □ > < □ > < □ >

Questions II

Question 2

Show that any finite cyclic group of order n is isomorphic to the quotient group $\frac{\mathbb{Z}}{N}$ where $<\mathbb{Z}, +>$ is a group of integers and N = < n >

Solution: Let $G = \langle a \rangle$ be of order n Define $f : \mathbb{Z} \to G$ s.t. $f(m) = a^m$ then f is clearly well defined and onto map. Since $f(m+k) = a^{m+k} = a^m \cdot a^k = f(m) \cdot f(k)$ f is a homomorphism and therefore by First theorem of Isomorphism, $G \cong \frac{\mathbb{Z}}{\frac{\mathbb{Z}}{kerf}}$ We show ker $f = N = \langle n \rangle$ Now $m \in \text{Ker } f = N = \langle n \rangle$

$$\Leftrightarrow f(m) = e$$

$$\Leftrightarrow a^m = e$$

Questions III

 $\Leftrightarrow O(a)|m$ $\Leftrightarrow n|m$ $\Leftrightarrow m \in <n >$

Hence $G \cong \frac{\mathbb{Z}}{\langle n \rangle}$

Question 3

If G is the additive group of reals and N is the subgroup of G consisting of integers ,prove that $\frac{G}{N}$ is isomorphic to the group H of all complex numbers of absolute value under multiplication.

Solution: Define a map

$$f(\alpha) = e^{2\pi i \alpha}$$

$$|e^{2\pi i \alpha}| = |\cos 2\pi \alpha + i \sin 2\pi \alpha| = \sqrt{\cos^2(2\pi \alpha) + \sin^2(2\pi \alpha)} = 1$$

We show f is onto

Let $h \in H$ be any element then h = a + ib

Questions IV

where
$$|a + ib| = 1 = \sqrt{a^2 + b}$$

 $a + ib = r(\cos\theta + i\sin\theta)$
 $|(a + ib| = 1 \Rightarrow r = 1$
 $a + ib = \cos\theta + i\sin\theta = e^{i\theta}$
 $f(\frac{\theta}{2\pi}) = e^{\frac{\theta}{2\pi} \cdot 2\pi i} = e^{i\theta}$
 $\Rightarrow \frac{\theta}{2\pi}$ is the required pre image
Now we will show that f is a homomorphism as

$$f(heta_1 + heta_2) = e^{2\pi(heta_1 + heta_2)i}$$

= $e^{2\pi heta_1 i} \cdot e^{2\pi heta_2 i} = f(heta_1)f(heta_2)$

By first theorem of isomorphism $H \cong \frac{G}{kerf}$ We claim that ker f= N Let $\alpha \in Kerf$

$$\Leftrightarrow f(\alpha) = 1$$
$$\Leftrightarrow e^{2\pi i \alpha} = 1$$

< □ > < 同 > < 回 > < 回 > < 回 >

Questions V

$$\Leftrightarrow \cos 2\pi\alpha + i \sin 2\pi\alpha = 1 + i0$$
$$\Leftrightarrow \cos 2\pi\alpha = 1, \sin 2\pi\alpha = 0$$
$$\Leftrightarrow 2\pi\alpha = 2\pi\alpha n \pm 0$$
$$\Leftrightarrow \alpha = n$$
$$\Leftrightarrow \alpha \in N$$

Hence Ker f = N

< □ > < □ > < □ > < □ > < □ >