Group Isomorphisms

Srishti Patel(Roll no 23)
Delhi Technological University

October 2019

```
Definition
An isomorphism \Phi from a group G to a group G' is one-one ,onto mapping
that preseves the group operation,i.e
\Phi(xy)=\Phi(x)\cdot\Phi(y)
```

Notation: If G is isomorphic to G^{\prime} then we denote it by $G \cong G^{\prime}$

Examples of Isomorphisms I

(1) Let $G=(\mathbb{R},+)$ and $G^{\prime}=\left(\mathbb{R}^{+}, \cdot\right)$ be two groups then $\Phi: G \rightarrow G^{\prime}$ as $\Phi(x)=2^{x}$ is an isomorphism

- Φ is one-one -

Let $\Phi(x)=\Phi(y) \Rightarrow 2^{x}=2^{y} \Rightarrow 2^{x-y}=1 \Rightarrow x-y=0 \Rightarrow x=y$

- Φ is onto -

Let $\mathrm{y} \in \mathbb{R}^{+}$, then $\exists x=\log _{2} y$ such that $\Phi(x)=2^{x}=2^{\log _{2} y}=y$ therefore, Φ is onto

- Φ is homomorphism -

$$
\Phi(x+y)=2^{x+y}=2^{x} \cdot 2^{y}=\Phi(x) \Phi(y)
$$

therefore Φ is an isomorphism.

Examples of Isomorphisms II

(2) Let $G=S L(2 \mathbb{R})$

Define $\Phi: G \rightarrow G$ as $\Phi(A)=M A M^{-1} \forall A \in G$ where M is a fixed 2×2 matrix in $S L(2, \mathbb{R})$ then Φ is an isomorphism

- ϕ is one one -

Let $\phi(A)=\phi(B) \Rightarrow M A M^{-1}=M B M^{-1} \Rightarrow A=B$ (by pre and post multiplying by M^{-1} and M^{1} respectively)

- ϕ is onto -

Let $\mathrm{A} \in \mathrm{G}$. Then $\exists M^{-1} A M \in G$ such that

$$
\Phi\left(M^{-1} A M\right)=M\left(M^{-1} A M\right) M^{-1}=A
$$

- ϕ is homomorphism-

$$
\Phi(A \cdot B)=M A B M^{-1}=\left(M A M^{-1}\right) M B M^{-1}=\Phi(A) \cdot \Phi(B)
$$

Therefore Φ is an isomorphism called the conjugation by M

Examples of Isomorphisms III

(3) Let $G=\left\{1, \omega, \omega^{2}\right\}$, the group of cube roots of unity and $G^{\prime}=\left\{R_{0}, R_{1}, R_{2}\right\}$ the group of rotations in the plane through $0^{\circ}, 120^{\circ}$ and 240° respectively.
The mapping $\theta: G \rightarrow G^{\prime}$ given by $\theta(1)=R_{0}, \theta(\omega)=R_{1}$ and $\theta\left(\omega^{2}\right)=R_{2}$ defines an isomorphism of G onto G^{\prime}.

Properties of isomorphism I

Let $\theta: G \rightarrow G^{\prime}$ be an isomorphism of G onto G^{\prime}.Let e and e' be the identity elements of G and G^{\prime} respectively. Then
(1) $\theta(e)=e^{\prime}$
proof:
Let $\theta(e)=a^{\prime} \in G^{\prime}$. Then $a^{\prime}=\theta(e)=\theta(e . e)=\theta(e) \cdot \theta(e)=a^{\prime} . a^{\prime}$.
Thus $a^{\prime} a^{\prime}=a^{\prime}=a^{\prime} e^{\prime}$, by left cancellation law $a^{\prime}=e^{\prime}$. Hence $\theta(e)=e^{\prime}$
(2) $\theta\left(a^{-1}\right)=\{\theta(a)\}^{-1}$ for all $a \in G$
proof:
$\theta\left(a^{-1}\right) \cdot \theta(a)=\theta\left(a^{-1} \cdot a\right)=\theta(e)=e^{\prime}$ and
$\theta(a) \cdot \theta\left(a^{-1}\right)=\theta\left(a \cdot a^{-1}\right)=\theta(e)=e^{\prime}$. Hence by uniqueness of inverse
in $\mathrm{G}^{\prime}, \theta\left(a^{-1}\right)$ is the inverse of $\theta(a)$
Remark: in the above properties the result is valid even if θ is one-one and homomorphism .It need not be onto.

Properties of isomorphism II

- $\forall n \in \mathbb{Z}$ and $\forall a \in G, \theta\left(a^{n}\right)=[\theta(a)]^{n}$

Proof:
Case1:
When $\mathrm{n}=0$ then $\theta\left(a^{0}\right)=\theta(e)=e^{\prime}$, also $[\theta(a)]^{n}=[\theta(a)]^{0}=e^{\prime}$ therefore, $\theta\left(a^{n}\right)=[\theta(a)]^{n}$
Case 2:
When $n \in \mathbb{Z}^{+}$

$$
\begin{gathered}
\theta\left(a^{n}\right)=\theta(a \cdots a)\{n \text { times }\} \\
=\theta(a) \cdot \theta(a) \cdots \theta(a)\{n \text { nimes }\} \\
=[\theta(a)]^{n}
\end{gathered}
$$

Case 3:
When $n \in \mathbb{Z}^{-}$, Let $n=-m ; m \in \mathbb{Z}$

$$
\begin{aligned}
\theta\left(a^{n}\right)=\theta\left(a^{-m}\right) & =\left[\theta\left(a^{-1}\right)\right]^{m}=[\theta(a)]^{-m} \\
& =[\theta(a)]^{n}
\end{aligned}
$$

Theorems I

Theorem
 Let G and G^{\prime} be isomorphic.If G is abelian ,so is G^{\prime}

Proof:

Let $\theta: G \rightarrow G^{\prime}$ be isomorphism of G onto G^{\prime}. Let $a^{\prime}, b^{\prime} \in G^{\prime}$. Since θ is onto , there exists $a \in G$ and $b \in G$ such that $\theta(a)=a^{\prime}$ and $\theta(b)=b^{\prime}$.Now $a^{\prime} \cdot b^{\prime}=\theta(a) \cdot \theta(b)=\theta(a b)=\theta(b a)$ (Since G is abelian $)=\theta(b) \cdot \theta(a)=b^{\prime} a^{\prime}$.
Thus G^{\prime} is abelian.
Remark 1: The above theoram is also true if θ is an onto homomorphism. Remark 2: If G is abelian and G^{\prime} is non abelian then G and G^{\prime} cannot be isomorphic.

Theorem

Any infinite cyclic group is isomorphic to Z and any finite cyclic group of order n is isomorphic to Z_{n}

Theorems II

Proof:

Case1: Let $G=<a>$ be an infinite cyclic group.Define $f: Z \rightarrow G$ given by $f(n)=a^{n}$
then $f(m+n)=a^{m+n}=a^{m} \cdot a^{n}=f(m) \cdot f(n)$.
Therefore f is homomorphism. Since all the powers are distinct in G therefore f is one-one.By definition it is onto .
Hence $G \cong Z$
Case 2: Let G be a finite cyclic group of order n. $G=<a>$ such that $0(a)=n$. Let $f: Z_{n} \rightarrow G$ is defined by $f\left(k^{\prime}\right)=a^{k} f$ is well defined.
$I^{\prime}+m^{\prime}=k^{\prime} \Leftrightarrow I+m \equiv k(\bmod n) w h e r e 0 \leq k \leq n-1$
$\Leftrightarrow(I+m-k) \mid n \Leftrightarrow(I+m-k)=n p \Leftrightarrow a^{I+m-n p}=a^{k}$
$\Leftrightarrow a^{I+m} \cdot\left(a^{n}\right)^{-p}=a^{k} \Leftrightarrow a^{I+m}=a^{k}$
$f\left(I^{\prime}+m^{\prime}\right)=f\left(k^{\prime}\right)=a^{k}=a^{I+m}=a^{\prime} \cdot a^{m}=f\left(I^{\prime}\right) \cdot f\left(m^{\prime}\right)$
f is homomorphism.
$I^{\prime} \neq m^{\prime} \Rightarrow I \neq m \Rightarrow a^{\prime} \neq a^{m} \Rightarrow f\left(I^{\prime}\right) \neq f\left(m^{\prime}\right)$
Therefore f is one-one. Clearly f is onto hence f is an isomorphism $G \cong Z_{n}$

Theorems III

Corollary1

Any two cyclic groups of the same order are isomorphic
Proof: Case 1:Let G and G^{\prime} be finite cyclic groups of order n , then $G \cong Z_{n}$ and $G^{\prime} \cong Z_{n}$ (by the above theorem)therefore, $G \cong G^{\prime}$
Case 2: Let G and G^{\prime} be infinite cyclic groups.By previous theorem $G \cong Z$ and $G^{\prime} \cong Z$ therefore, $G \cong G^{\prime}$

Remark

For each prime p,there exists only one group(upto isomorphism) of order p i.e the cyclic group of order p

First theorem of Isomorphism

Theorem

Let $f: G \rightarrow G^{\prime}$ be a homomorphism of G onto G^{\prime} and kernel of f is K then

- K is normal in G
- $\frac{G}{K} \cong G^{\prime}$

Proof: Let $f^{\prime}: \frac{G}{K} \rightarrow G^{\prime}$ be defined as $f^{\prime}(a K)=f(a)$ for $a \in G$ Let $a K=b K \Leftrightarrow a^{-1} b \in K \Leftrightarrow f\left(a^{-1} b\right)=e^{\prime} \Leftrightarrow f\left(a^{-1}\right) \cdot f(b)=e^{\prime}$ $\Leftrightarrow f\left(a^{-1}\right) \cdot f(b)=e^{\prime} \Leftrightarrow f(a)=f(b) \Leftrightarrow f^{\prime}(a K)=f^{\prime}(b K)$
Therefore f is well defined and one-one Since f is onto hence f^{\prime} is also onto
$f^{\prime}(a K b K)=f^{\prime}(a b K)=f(a b)=f(a) \cdot(b)=f^{\prime}(a K) \cdot f^{\prime}(b K)$
Therefore f^{\prime} is homomorphism and since f^{\prime} is one-one and onto as well hence f is isomorphism

$$
\frac{G}{K} \cong G^{\prime}
$$

Lemma

Let $f: G \rightarrow G^{\prime}$ be a homomorphism then,

- if $H<G$,then $f(H)=H^{\prime}<G^{\prime}$
- if H is normal in G anf f is onto then H^{\prime} is normal in G^{\prime}
- if $H^{\prime}<G^{\prime} \Rightarrow f^{-1}\left(H^{\prime}\right)=H<G$
- if H^{\prime} is normal in $G^{\prime} \Rightarrow H$ is normal in G,further if f is onto then $\frac{G}{H} \cong \frac{G^{\prime}}{H^{\prime}}$

Second Theorem of Isomorphism

Theorem
Let H and K be normal in G such that $K \subset H$ then

- $\frac{H}{K} \triangleleft \frac{G}{K}$
- $\frac{G / K}{H / K} \cong \frac{G}{H}$

Proof: Consider the projection map

$$
p: G \rightarrow \frac{G}{K}=G^{\prime}
$$

by $p(a)=a K$ where $a \in G$. Since H is normal in $G, p(H)=\frac{H}{K}=H^{\prime}$ Consider

$$
\begin{gathered}
G / K=\{a K \mid a \in G\} \\
H / K=\{a K \mid a \in H\} \\
H^{\prime} \triangleleft G^{\prime}
\end{gathered}
$$

also from previous lemma, we have $\frac{G^{\prime}}{H^{\prime}} \cong \frac{G}{H}$ that is $\frac{G / K}{H / K} \cong \frac{G}{H}$

Third theorem of Isomorphism I

Theorem
Let $H, K<G$ with K is normal in G

- $H \cap K$ is normal in H
- $\frac{H}{H \cap K} \cong \frac{H K}{K}$

Proof: Since K is normal in G and $K \leq G$ therefore HK is a subgroup of $\mathrm{G} \Rightarrow H K=K H$.
As K is normal in G and $H K \leq G$ thus K is normal in $H K \Rightarrow \frac{H K}{K}$ well defined.
Also $H \cap K$ is normal in H .
Let $x \in H \cap K$
$\Rightarrow x \in H$ and $x \in K$, since $h \in H$ therefore $h x h^{-1} \in H$
also since K is normal in G and $x \in K$ therefore $h x h^{-1} \in K$ and hence $h \times h^{-1} \in H \cap K$

Third theorem of Isomorphism II

define $f: H \rightarrow \frac{H K}{K}$ by

$$
f(a)=a K
$$

then $x K \in \frac{H K}{K}$ then $x K=(h k) K=h K=f(H)$ (for some $h \in H$ and $k \in K$)
Therefore f is onto

$$
f(a b)=a b K=a K \cdot b K=f(a) \cdot f(b)
$$

f is a homomorphism Kerf $=\{a \in H \mid f(a)=K\}=\{a \in H \mid a K=K\}$
$=\{a \in H \mid a \in K\}=H \cap K$
From first isomorphism theorem we have

$$
\frac{H}{H \cap K} \cong \frac{H K}{K}
$$

Questions I

Question 1

Show that $<Q,+>$ cannot be isomorphic to $<Q^{*}, \cdot>$ where $Q^{*}=Q-\{0\}$

Solution: Suppose f is an isomorphism from Q to Q^{*}. Then $2 \in Q^{*}, \mathrm{f}$ is onto therefore, $\exists \alpha \in<Q^{*}>$,s.t. $f(\alpha)=2$

$$
\begin{aligned}
& \Rightarrow f\left(\frac{\alpha}{2}+\frac{\alpha}{2}\right)=2 \\
& \Rightarrow f\left(\frac{\alpha}{2}\right) \cdot f\left(\frac{\alpha}{2}\right)=2
\end{aligned}
$$

$\Rightarrow x^{2}=2$ where $x=f\left(\frac{\alpha}{2}\right) \in Q^{*}$
But that is a contradiction as there is no rational number x such that $x^{2}=2$. Hence the result follows

Questions II

Question 2

Show that any finite cyclic group of order n is isomorphic to the quotient group $\frac{\mathbb{Z}}{N}$ where $<\mathbb{Z},+>$ is a group of integers and $N=<n>$

Solution: Let $G=<a>$ be of order n
Define $f: \mathbb{Z} \rightarrow G$ s.t. $f(m)=a^{m}$ then f is clearly well defined and onto map.
Since $f(m+k)=a^{m+k}=a^{m} \cdot a^{k}=f(m) \cdot f(k)$
f is a homomorphism and therefore by First theorem of Isomorphism, $G \cong \frac{\mathbb{Z}}{\text { kerf }}$
We show ker $\mathrm{f}=N=<n>$
Now $m \in \operatorname{Ker} f=N=<n>$

$$
\begin{gathered}
\Leftrightarrow f(m)=e \\
\Leftrightarrow a^{m}=e
\end{gathered}
$$

Questions III

$$
\begin{gathered}
\Leftrightarrow O(a) \mid m \\
\Leftrightarrow n \mid m \\
\Leftrightarrow m \in<n>
\end{gathered}
$$

Hence $G \cong \frac{\mathbb{Z}}{<n>}$

Question 3

If G is the additive group of reals and N is the subgroup of G consisting of integers, prove that $\frac{G}{N}$ is isomorphic to the group H of all complex numbers of absolute value under multiplication.

Solution: Define a map
$f(\alpha)=e^{2 \pi i \alpha}$
$\left|e^{2 \pi i \alpha}\right|=|\cos 2 \pi \alpha+i \sin 2 \pi \alpha|=\sqrt{\cos ^{2}(2 \pi \alpha)+\sin ^{2}(2 \pi \alpha)}=1$
We show f is onto
Let $h \in H$ be any element then $h=a+i b$

Questions IV

where $|a+i b|=1=\sqrt{a^{2}+b}$
$a+i b=r(\cos \theta+i \sin \theta)$
$\mid(a+i b \mid=1 \Rightarrow r=1$
$a+i b=\cos \theta+i \sin \theta=e^{i \theta}$
$f\left(\frac{\theta}{2 \pi}\right)=e^{\frac{\theta}{2 \pi} \cdot 2 \pi i}=e^{i \theta}$
$\Rightarrow \frac{\theta}{2 \pi}$ is the required pre image
Now we will show that f is a homomorphism as

$$
\begin{gathered}
f\left(\theta_{1}+\theta_{2}\right)=e^{2 \pi\left(\theta_{1}+\theta_{2}\right) i} \\
=e^{2 \pi \theta_{1} i} \cdot e^{2 \pi \theta_{2} i}=f\left(\theta_{1}\right) f\left(\theta_{2}\right)
\end{gathered}
$$

By first theorem of isomorphism $H \cong \frac{G}{\text { kerf }}$
We claim that ker $\mathrm{f}=\mathrm{N}$
Let $\alpha \in$ Kerf

$$
\begin{aligned}
& \Leftrightarrow f(\alpha)=1 \\
& \Leftrightarrow e^{2 \pi i \alpha}=1
\end{aligned}
$$

Questions V

$$
\begin{gathered}
\Leftrightarrow \cos 2 \pi \alpha+i \sin 2 \pi \alpha=1+i 0 \\
\Leftrightarrow \cos 2 \pi \alpha=1, \sin 2 \pi \alpha=0 \\
\Leftrightarrow 2 \pi \alpha=2 \pi \alpha n \pm 0 \\
\Leftrightarrow \alpha=n \\
\Leftrightarrow \alpha \in N
\end{gathered}
$$

Hence Ker $f=N$

