
GOMOKU & Minimax-alphabeta search

Mykola Shevchenko 130708081

Abstract— Gomoku is an abstract strategy board game, also
called Omok or Five in a Row. This paper explains the
implementation of an AI with minimax alpha-beta search with
a sequences pattern recognition.

I. INTRODUCTION

Gomoku is usually played on a board of 15x15 consists
in position black and white stones on a board.1 The player
with five consecutive stones of the same color wins the game.
The minimax algorithm focuses on minimizing the possible
loss for a worst case (maximum loss) scenario. The recursive
implementation allows the algorithm to be considerably fast
with reasonable winning moves.

II. IMPLEMENTATION

A. Strategy

The strategy is hidden in the evaluation function, which is
responsible for determining how good or bad a move is. This
is achievable by constructing a tree with a specified depth
and to give each position of stones on the board a score that
would represent the gravity of future probable situation. In
fact, it is important to understand that the minimax algorithm
always implied the opponent will make the best possible
move. Therefore the final outcome will depend only on the
sensible weight specified to different combinations.

B. Minimax implementation

This algorithm allows the evaluation of a position and
decides how efficient it would be for a player to reach
that position.2 However, it is not the most optimal solution
because it might get lost in evaluating poor scenarios while
there would be some obvious winning once. In fact, when-
ever it is applied to games like Gomoku with board 8x8 (=64
cells with three possible states: white, black or null), the time
to compute all the possible combinations is unacceptable.

643 = 262144

The algorithm minimax will have to analyze all 262144
scenarios. To make the algorithm more efficient, alpha-beta
pruning is integrated into the method. It seeks to decrease the
number of nodes that are evaluated by the minimax algorithm
in its search tree. It consists of passing two key values to
determine if a branch is worth being analysed.

C. Alpha-beta integration

The min. (alpha) and max. values (beta) are recursively
passed into the arguments of the function and get assigned
the best score so far. The cutoff happens whenever we want
to skip a tree as we know the move we already did is good

enough. This allows our program to think quicker and still be
reasonable. Whenever a specified depth is reached, it stops
creating new moves for both players. This is where evalution
of the board happens.

D. Evaluation function

The evaluation function is what analyzes the best moves
and give each board a score. The depth in the search
determines the amount of moves the algorithm will predict.
In the current scenario the depth is four which means two
plies for each player will be on the board.

E. Pattern Recognition

The implementation in this paper is based on translation of
rows, coloumns and diagonals into sequences of string. After
every translation, each sequence is analyzed on multiple
values and possible strategic combinations. The biggest score
is assigned to a five in a row ”GGGGG” (e.g = 1000).
The least dangerous combinations are given a lower score.
Therefore combinations

x4 = 100, x3 = 10, x2 = 1.

In order to achieve better performance during evaluation
it is crucial to increase the possible combinations. In fact,
the second most strategic possible combos are the empty
spaces around streaks. In fact whenever on the board there
is a space, it is translated in the straing as an underscore.
This allows the evaluation to search for patterns as GG GG
or G GGG where the underscore is currently the space in
the middle of the stones translated as G.

III. CONCLUSIONS

The current algorithm is able to block a casual user with a
common intention of creating four in a row. These possible
moves are predicted and blocked, while at the same time the
algorithm considers the best strategic moves. The current
depth is 4 and it is relateively fast (less than 0.5 seconds)
and responsive.

ACKNOWLEDGMENT

I would like to thank my companion Henrik Skogmo for
intense coding and exciting Waterloo battles.

REFERENCES

[1] YourTurnMyTurn.com team, Introduction and object of the
board game, Go-moku rules, accessed 3rd March 2016,
http://www.yourturnmyturn.com/rules/go-moku.php

[2] ME 575 - Optimization, Minimax and Max-
imin Optimization, accessed 3rd March 2016, ¡
http://apmonitor.com/me575/index.php/Main/MiniMax¿


