Fundamentals of Signal Enhancement and Array Signal Processing Solution Manual

Lidor Malul 318628005

6 An Exhaustive Class of Linear Filters

6.1

Show that the Wiener filter can be expressed as

$$
\mathbf{h}_{\mathrm{W}}=\left(\mathbf{I}_{M}-\boldsymbol{\Phi}_{\mathbf{y}}^{-1} \boldsymbol{\Phi}_{\mathrm{in}}\right) \mathbf{i}_{\mathrm{i}}
$$

Solution:

as we know from (6.35):

$$
h_{W}=\Phi_{y}{ }^{-1} \Phi_{x} i_{i}
$$

which Φ_{y} is :

$$
\Phi_{y}=\Phi_{x}+\Phi_{i n} \Rightarrow \Phi_{x}=\Phi_{y}-\Phi_{i n}
$$

place this conclusion in (6.35) :

$$
h_{W}=\Phi_{y}^{-1}\left(\Phi_{y}-\Phi_{i n}\right) i_{i}=\left(\Phi_{y}^{-1} \Phi_{y}-\Phi_{y}^{-1} \Phi_{i n}\right) i_{i}=\left(I_{M}-\Phi_{y}^{-1} \Phi_{i n}\right) i_{i}
$$

6.2

Using Woodbury's identity, show that

$$
\boldsymbol{\Phi}_{\mathbf{y}}^{-1}=\boldsymbol{\Phi}_{\mathrm{in}}^{-1}-\boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\left(\mathbf{\Lambda}_{\mathbf{x}}^{\prime-1}+\mathbf{Q}_{\mathbf{x}}^{\prime H} \boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\right)^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime H} \boldsymbol{\Phi}_{\mathrm{in}}^{-1}
$$

Solution:

we write Φ_{x} with his eigenvalue decomposition :

$$
\Phi_{x}={Q_{x}^{\prime}}^{\prime} \Lambda_{x}^{\prime} Q_{x}^{\prime}{ }^{H}
$$

now we can express $\Phi_{y}{ }^{-1}$ as:

$$
\Phi_{y}^{-1}=\left(\Phi_{i n}+\Phi_{x}\right)^{-1}=\left(\Phi_{i n}+{\left.Q_{x}^{\prime} \Lambda_{x}^{\prime} Q_{x}^{\prime} H\right)^{-1}, ~ i n}^{\prime}\right.
$$

woodbury identity determines that:
if:
$\Phi_{i n}$ a $M \times M$ reversible matrix
Λ_{x}, a $R_{x} \times R_{x}$ reversible matrix
Q_{x} a $M \times R_{x}$ matrix
$Q_{x}{ }^{\prime}{ }^{H}$ a $R_{x} \times m$ matrix
so:

$$
\begin{aligned}
& \left(\Phi_{i n}+Q_{x}{ }^{\prime} \Lambda_{x}{ }^{\prime} Q_{x}{ }^{\prime}{ }^{H}\right)^{-1}=\Phi_{i n}{ }^{-1}-\Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime}\left(\Lambda_{x}{ }^{\prime-1}+Q_{x}{ }^{\prime H} \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime}\right)^{-1} Q_{x}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1}
\end{aligned}
$$

6.4

Show that the MVDR filter is given by

$$
\mathbf{h}_{\mathrm{MVDR}}=\boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\left(\mathbf{Q}_{\mathbf{x}}^{\prime H} \boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\right)^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime H} \mathbf{i}_{\mathbf{i}} .
$$

Solution:

in order to find the MVDR filter we will solve the following minimization:
$\min _{h}\left[J_{n}(h)+J_{i}(h)\right]$ subject to $h^{H} Q_{x}{ }^{\prime}=i_{i} Q_{x}{ }^{\prime}$
using Lagrange multiplier we define the next function:

$$
L(h, \lambda)=f(n)-\lambda g(h)
$$

where λ is a $1 \times R_{x}$ vector and:

$$
\begin{gathered}
f(h)=J_{n}(h)+J_{i}(h)=\Phi_{v o} h^{H} h+h^{H} \Phi_{v} h=h^{H} \Phi_{i n} h \\
g(h)=i_{i} Q_{x}{ }^{\prime}-h^{H} Q_{x}{ }^{\prime}
\end{gathered}
$$

now we will find the minimum of L :

$$
\begin{aligned}
& \frac{\partial L(h, \lambda)}{\partial h}=2 \Phi_{i n} h-Q_{x}{ }^{\prime} \lambda^{T}=0 \rightarrow h=\frac{1}{2} \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime} \lambda^{T} \\
& \frac{\partial L(h, \lambda)}{\partial \lambda}=h^{H} Q_{x}{ }^{\prime}-i_{i}{ }^{T} Q_{x}{ }^{\prime}=0 \rightarrow h^{H} Q_{x}{ }^{\prime}=i_{i}{ }^{T} Q_{x}{ }^{\prime} \rightarrow Q_{x}{ }^{\prime}{ }^{H} h=Q_{x}{ }^{\prime}{ }^{H} i_{i} \\
& Q_{x}{ }^{\prime}{ }^{H} h=\frac{1}{2} Q_{x}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime} \lambda^{T}=Q_{x}{ }^{\prime}{ }^{H} i_{i} \rightarrow \lambda^{T}=2\left(Q_{x}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime}\right)^{-1} Q_{x}{ }^{\prime}{ }^{H} i_{i} \\
& \rightarrow h=\frac{1}{2} \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime} \lambda^{T}=\Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime}\left(Q_{x}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime}\right)^{-1} Q_{x}{ }^{\prime}{ }^{H} i_{i}
\end{aligned}
$$

6.5

Show that the MVDR filter can be expressed as

$$
\mathbf{h}_{\mathrm{MVDR}}=\boldsymbol{\Phi}_{\mathbf{y}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\left(\mathbf{Q}_{\mathbf{x}}^{\prime H} \boldsymbol{\Phi}_{\mathbf{y}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\right)^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime H} \mathbf{i}_{\mathbf{i}} .
$$

Solution:

the MVDR filter is given from the minimiazion of $\left[J_{n}(h)+J_{i}(h)\right]$ since $\left[J_{d}(h)\right]$ equals 0 :

$$
\begin{aligned}
& {\left[J_{n}(h)+J_{i}(h)\right]=\left[J_{n}(h)+J_{i}(h)+J_{d}(h)\right]=} \\
& \quad=\phi_{x 1}+h^{H} \Phi_{y} h-h^{H} \Phi_{x} i_{i}-i_{i}^{T} \Phi_{x} h
\end{aligned}
$$

after the derivative by h all the elements reduce/reset exept from $\frac{\partial h^{H} \Phi_{y} h}{d \partial}$ so we continue the previous algorithm with:

$$
f(x)=h^{H} \Phi_{y} h
$$

so the result is:

$$
h=\Phi_{y}{ }^{-1} Q_{x}{ }^{\prime}\left(Q_{x}{ }^{\prime}{ }^{H} \Phi_{y}{ }^{-1} Q_{x}{ }^{\prime}\right)^{-1} Q_{x}{ }^{\prime H}{ }_{i}
$$

6.7

Show that the tradeoff filter can be expressed as

$$
\mathbf{h}_{\mathrm{T}, \mu}=\mathbf{\Phi}_{\mathrm{in}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\left(\mu \boldsymbol{\Lambda}_{\mathbf{x}}^{\prime-1}+\mathbf{Q}_{\mathbf{x}}^{\prime H} \boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime}\right)^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime H} \mathbf{i}_{\mathrm{i}}
$$

Solution:

we know that the tradeoff filter is:

$$
h_{T, \mu}=\left[\Phi_{x}+\mu \Phi_{i n}\right]^{-1} \Phi_{x} i_{i}
$$

we use the eigenvalue decomposition of Φ_{x} :

$$
\Phi_{x}=Q_{x}^{\prime} \Lambda_{x}^{\prime} Q_{x}^{\prime}{ }^{\prime}
$$

so we get:

$$
h_{T, \mu}=\left[\Phi_{x}+\mu \Phi_{i n}\right]^{-1} \Phi_{x} i_{i}=\left[\mu \Phi_{i n}+{Q_{x}}^{\prime}{\Lambda_{x}}^{\prime}{Q_{x}}^{\prime} H\right]^{-1}{Q_{x}}^{\prime}{\Lambda_{x}}^{\prime}{Q_{x}}^{\prime}{ }^{H} i_{i}
$$

we will also use the following statement which we prove later:

$$
(A+V C U)^{-1} U=A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} C^{-1}
$$

which: A a $M \times M$ reversible matrix
C a $R_{x} \times R_{x}$ reversible matrix
U a $M \times R_{x}$ matrix
V a $R_{x} \times m$ matrix
so we got:

$$
\begin{aligned}
& h_{T, \mu}=\left[\mu \Phi_{i n}+{Q_{x}}^{\prime}{\Lambda_{x}}^{\prime}{Q_{x}}^{\prime}{ }^{H}\right]^{-1}{Q_{x}}^{\prime}{\Lambda_{x}}^{\prime}{Q_{x}}^{\prime}{ }^{H} i_{i}=\frac{1}{\mu} \Phi_{i n}{ }^{-1}{Q_{x}{ }^{\prime}\left(\Lambda_{x}{ }^{\prime-1}+\frac{1}{\mu}{Q_{x}}^{\prime} H^{H} \Phi_{i n}{ }^{-1}{Q_{x}}^{\prime}\right)^{-1} \Lambda_{x}{ }^{\prime-1} \Lambda_{x}{ }^{\prime} Q_{x}{ }^{\prime} H_{i}}^{i_{i}} \\
& h_{T, \mu}=\Phi_{i n}{ }^{-1}{Q_{x}}^{\prime}\left(\mu \Lambda_{x}{ }^{\prime-1}+{\left.Q_{x}{ }^{\prime} H \Phi_{i n}{ }^{-1} Q_{x}{ }^{\prime}\right)^{-1} Q_{x}{ }^{\prime}{ }^{H} i_{i}}\right.
\end{aligned}
$$

prove for the statement we used:

$$
\begin{gathered}
(A+U C V)^{-1} U=\left(A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}\right) U= \\
=A^{-1} U-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1} U=A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1}\left[C^{-1}+V A^{-1} U-V A^{-1} U\right]= \\
=A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} C^{-1}
\end{gathered}
$$

6.8

Show that the LCMV filter is given by

$$
\mathbf{h}_{\mathrm{LCMV}}=\boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{C}_{\mathbf{x v}_{1}}\left(\mathbf{C}_{\mathbf{x v}_{1}}^{H} \boldsymbol{\Phi}_{\mathrm{in}}^{-1} \mathbf{C}_{\mathbf{x v}_{1}}\right)^{-1} \mathbf{i}_{\mathrm{c}}
$$

Solution:

in order to find the LCMV filter we will solve the following minimization:
$\min _{h}\left[J_{n}(h)+J_{i}(h)\right]$ subject to $h^{H} C_{x v 1}{ }^{\prime}=i_{i}$
using Lagrange multiplier we define the next function:

$$
L(h, \lambda)=f(n)-\lambda g(h)
$$

where λ is a $1 \times R_{x}$ vector and :

$$
\begin{gathered}
f(h)=J_{n}(h)+J_{i}(h)=\Phi_{v o} h^{H} h+h^{H} \Phi_{v} h=h^{H} \Phi_{i n} h \\
g(h)=i_{i}-h^{H} C_{x v 1}
\end{gathered}
$$

now we will find the minimum of L :

$$
\begin{gathered}
\frac{\partial L(h, \lambda)}{\partial h}=2 \Phi_{i n} h-C_{x v 1} \lambda^{T}=0 \rightarrow h=\frac{1}{2} \Phi_{i n}{ }^{-1} C_{x v 1} \lambda^{T} \\
\frac{\partial L(h, \lambda)}{\partial \lambda}=h^{H} C_{x v 1}{ }^{\prime}-i_{i}{ }^{T} C_{x v 1}{ }^{\prime}=0 \rightarrow h^{H} C_{x v 1}{ }^{\prime}=i_{i}{ }^{T} C_{x v 1}{ }^{\prime} \rightarrow C_{x v 1}{ }^{\prime}{ }^{H} h=C_{x v 1}{ }^{\prime} H i_{i} \\
C_{x v 1}{ }^{\prime}{ }^{H} h=\frac{1}{2} C_{x v 1}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1} C_{x v 1}{ }^{\prime} \lambda^{T}=C_{x v 1}{ }^{\prime}{ }^{H} i_{i} \rightarrow \lambda^{T}=2\left(C_{x v 1}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1} C_{x v 1}\right)^{\prime-1} C_{x v 1}{ }^{\prime}{ }^{H} i_{i} \\
\rightarrow h_{L C M V}=\frac{1}{2} \Phi_{i n}{ }^{-1} C_{x v 1}{ }^{\prime} \lambda^{T}=\Phi_{i n}{ }^{-1} C_{x v 1}{ }^{\prime}\left(C_{x v 1}{ }^{\prime}{ }^{H} \Phi_{i n}{ }^{-1} C_{x v 1}\right)^{\prime-1} C_{x v 1}{ }^{\prime}{ }^{H} i_{i}
\end{gathered}
$$

6.10

Show that the LCMV filter can be expressed as

$$
\mathbf{h}_{\mathrm{LCMV}}=\mathbf{Q}_{\mathbf{v}_{1}}^{\prime \prime} \boldsymbol{\Phi}_{\mathrm{in}}^{\prime-1} \mathbf{Q}_{\mathbf{v}_{1}}^{\prime \prime H} \mathbf{Q}_{\mathbf{x}}^{\prime}\left(\mathbf{Q}_{\mathbf{x}}^{\prime H} \mathbf{Q}_{\mathbf{v}_{1}}^{\prime \prime} \boldsymbol{\Phi}_{\mathrm{in}}^{\prime-1} \mathbf{Q}_{\mathbf{v}_{1}}^{\prime \prime H} \mathbf{Q}_{\mathbf{x}}^{\prime}\right)^{-1} \mathbf{Q}_{\mathbf{x}}^{\prime H} \mathbf{i}_{\mathbf{i}}
$$

Solution:

in order to find the LCMV filter a we will solve the following minimization:
$\min _{h}\left[J_{n}(a)+J_{i}(a)\right]$ subject to $i_{i}{ }^{T} Q_{x}{ }^{\prime}=a^{H} Q_{v 1}{ }^{\prime \prime} H Q_{x}{ }^{\prime}$
using Lagrange multiplier we define the next function:

$$
L(h, \lambda)=f(n)-\lambda g(h)
$$

where λ is a $1 \times R_{x}$ vector and :

$$
\begin{gathered}
f(a)=J_{n}(a)+J_{i}(a)=\Phi_{v o} a^{H} a+a^{H} \Phi_{v} h=h^{H} \Phi_{i n} h \\
g(a)=i_{i}{ }^{T}{Q_{x}}^{\prime}-a^{H} Q_{v 1}{ }^{\prime \prime}{ }^{H}{Q_{x}}^{\prime}
\end{gathered}
$$

now we will find the minimum of L :

$$
\begin{aligned}
& \frac{\partial L(a, \lambda)}{\partial a}=2 \Phi_{i n} a-Q_{v 1}{ }^{\prime \prime} H Q_{x}{ }^{\prime} \lambda^{T}=0 \rightarrow a=\frac{1}{2} \Phi_{i n}{ }^{-1} Q_{v 1}{ }^{\prime \prime} H Q_{x}{ }^{\prime} \lambda^{T} \\
& \frac{\partial L(a, \lambda)}{\partial \lambda}=0 \rightarrow g(a)=0 \rightarrow a^{H} Q_{v 1}{ }^{\prime \prime}{ }^{H}{Q_{x}}^{\prime}=i_{i}{ }^{T}{Q_{x}}^{\prime} \rightarrow Q_{v 1}{ }^{\prime \prime} Q_{x}{ }^{\prime H} a={Q_{x}}^{{ }^{H}}{ }^{H} i_{i} \\
& Q_{v 1}{ }^{\prime \prime} Q_{x}{ }^{\prime H} a=\frac{1}{2} Q_{v 1}{ }^{\prime \prime}{Q_{x}}^{\prime H} \Phi_{i n}{ }^{-1} Q_{v 1}{ }^{\prime \prime} H Q_{x}{ }^{\prime} \lambda^{T}={Q_{x}{ }^{\prime} H} i_{i} \rightarrow \lambda^{T}=2\left(Q_{v 1}{ }^{\prime \prime}{Q_{x}}^{\prime H} \Phi_{i n}{ }^{-1} Q_{v 1}{ }^{\prime \prime}{ }^{H} Q_{x}{ }^{\prime}\right)^{-1} Q_{x}{ }^{\prime H} i_{i} \\
& \rightarrow a_{L M C V}=\Phi_{i n}{ }^{-1} Q_{v 1}{ }^{\prime \prime}{ }^{H} Q_{x}{ }^{\prime}\left(Q_{v 1}{ }^{\prime \prime} Q_{x}{ }^{\prime H} \Phi_{i n}{ }^{-1} Q_{v 1}{ }^{\prime \prime} H_{Q_{x}}\right)^{-1} Q_{x}{ }^{\prime}{ }^{H} i_{i}
\end{aligned}
$$

6.11

Show that the maximum SINR filter with minimum distortion is given by

$$
\begin{aligned}
\mathbf{h}_{\mathrm{mSINR}} & =\frac{\mathbf{t}_{1} \mathbf{t}_{1}^{H} \boldsymbol{\Phi}_{\mathbf{x}} \mathbf{i}_{\mathrm{i}}}{\lambda_{1}} \\
& =\mathbf{t}_{1} \mathbf{t}_{1}^{H} \boldsymbol{\Phi}_{\mathrm{in}} \mathbf{i}_{\mathbf{i}}
\end{aligned}
$$

Solution:

we know the maximum SINR filter is given by:

$$
h_{m S I N R}=t_{1} \varsigma
$$

where ς is an arbitrary complex number, determine by solving the following minimization :

$$
\begin{gathered}
J_{d}\left(h_{m S I N R}\right)=\Phi_{x 1}+\lambda_{1}|\varsigma|^{2}-\varsigma^{*} t_{1}{ }^{H} \Phi_{x} i_{i}-\varsigma i_{i}^{T} \Phi_{x} t_{1} \\
\frac{\partial J_{d}}{\partial \varsigma^{*}}=2 \lambda_{1} \varsigma-t_{1}{ }^{H} \Phi_{x} i_{i}-\left(i_{i}{ }^{T} \Phi_{x} t_{1}\right)^{H}=0 \\
2 \lambda_{1} \varsigma-t_{1}{ }^{H} \Phi_{x} i_{i}-t_{1}{ }^{H} \Phi_{x} i_{i}=0 \rightarrow \varsigma=\frac{t_{1}{ }^{H} \Phi_{x} i_{i}}{\lambda_{1}}
\end{gathered}
$$

so the maximum SINR filter is:

$$
h_{s S I N R}=\frac{t_{1} t_{1}^{H} \Phi_{x} i_{i}}{\lambda_{1}}
$$

6.13

Show that the output SINR can be expressed as

$$
\begin{aligned}
\operatorname{oSINR}(\mathbf{a}) & =\frac{\mathbf{a}^{H} \boldsymbol{\Lambda} \mathbf{a}}{\mathbf{a}^{H} \mathbf{a}} \\
& =\frac{\sum_{i=1}^{R_{x}}\left|a_{i}\right|^{2} \lambda_{i}}{\sum_{m=1}^{M}\left|a_{m}\right|^{2}}
\end{aligned}
$$

Solution:

let's remember the definition of oSINR:

$$
o S I N R=\frac{h^{H} \Phi_{x} h}{h^{H} \Phi_{i n} h}
$$

where h writed in a basis formed:

$$
h=T a
$$

from (6.83) and (6.84):

$$
\begin{aligned}
T^{H} \Phi_{x} T & =\Lambda \\
T^{H} \Phi_{i n} T & =I_{M}
\end{aligned}
$$

we use all of that and substituting at the definition of oSINR:

$$
\begin{aligned}
\frac{h^{H} \Phi_{x} h}{h^{H} \Phi_{i n} h} & =\frac{a^{H} T^{H} \Phi_{x} T a}{a^{H} T^{H} \Phi_{i n} T a}=\frac{a^{H} \Lambda a}{a^{H} I_{M} a} \\
& \rightarrow o S I N R=\frac{a^{H} \Lambda a}{a^{H} a}
\end{aligned}
$$

6.14

Show that the transformed identity filter, $\mathbf{i}_{\mathbf{T}}$, does not affect the observations, i.e., $z=\mathbf{i}_{\mathbf{T}}^{H} \mathbf{T}^{H} \mathbf{y}=y_{1}$ and oSINR $\left(\mathbf{i}_{\mathbf{T}}\right)=\mathrm{iSINR}$. Solution:
we know that z is :

$$
z=a^{H} T^{H} y
$$

for $a=i_{T}$ we get:

$$
\begin{gathered}
z=i_{T}{ }^{H} T^{H} y=\left(T^{-1} i_{i}\right)^{H} T^{H} y=i_{i}{ }^{H} T^{-1 H} T^{H} y=i_{i} y \\
\rightarrow z=y_{1}
\end{gathered}
$$

6.16

Show that the MSE can be expressed as

$$
J(\mathbf{a})=\left(\mathbf{a}-\mathbf{i}_{\mathbf{T}}\right)^{H} \boldsymbol{\Lambda}\left(\mathbf{a}-\mathbf{i}_{\mathbf{T}}\right)+\mathbf{a}^{H} \mathbf{a} .
$$

Solution:

as we know from (6.83):

$$
\begin{gathered}
T^{H} \Phi_{x} T=\Lambda \rightarrow \Phi_{x}=T^{H-1} \Lambda T^{-1} \\
\phi_{x 1}=i_{i}{ }^{H} \Phi_{x} i_{i} \rightarrow \phi_{x 1}=i_{i}{ }^{H} T^{H-1} \Lambda T^{-1} i_{i}
\end{gathered}
$$

now we will simplify the MSE from section 6.15:

$$
J(a)=\phi_{x 1}-a^{H} \Lambda i_{T}-i_{T} \Lambda a+a^{h}\left(\Lambda+I_{M}\right) a
$$

as we prove before:

$$
\begin{gathered}
\phi_{x 1}=i_{i}{ }^{H} T^{H-1} \Lambda T^{-1} i_{i}=\left(T^{-1} i_{i}\right)^{H} \Lambda\left(T^{-1} i_{i}\right) \\
\rightarrow \phi_{x 1}=i_{T}{ }^{H} \Lambda i_{T} \\
\rightarrow J(a)=\phi_{x 1}-a^{H} \Lambda i_{T}-i_{T} \Lambda a+a^{h}\left(\Lambda+I_{M}\right) a=i_{T}{ }^{H} \Lambda i_{T}-a^{H} \Lambda i_{T}-i_{T} \Lambda a+a^{h} \Lambda a+a^{h} I_{M} a \\
=a^{H} \Lambda\left(a-i_{T}\right)-i_{T}{ }^{H} \Lambda\left(a-i_{T}\right)+a^{H} a=\left(a^{H} \Lambda-i_{T}{ }^{H} \Lambda\right)\left(a-i_{T}\right)+a^{H} a= \\
=\left(a^{H}-i_{T}{ }^{H}\right) \Lambda\left(a-i_{T}\right)+a^{H} a=\left(a-i_{T}\right)^{H} \Lambda\left(a-i_{T}\right)+a^{H} a \\
J(a)=\left(a-i_{T}\right)^{H} \Lambda\left(a-i_{T}\right)+a^{H} a
\end{gathered}
$$

6.17

Show that the maximum SINR filter with minimum MSE is given by

$$
\mathbf{h}_{\mathrm{mSINR}, 2}=\frac{\lambda_{1}}{1+\lambda_{1}} \mathbf{t}_{1} \mathbf{t}_{1}^{H} \boldsymbol{\Phi}_{\mathrm{in}} \mathbf{i}_{\mathrm{i}} .
$$

Solution:

first of all we know from the definition of T :

$$
\begin{gathered}
\text { (1).Tii}=t_{1} \\
\text { (2). } T^{H} \Phi_{i n} T=I_{M} \\
\rightarrow i_{i}{ }^{T}=i_{i}{ }^{T} I_{M}=i_{i}{ }^{H} T^{H} \Phi_{i n} T=\left(T i_{i}\right)^{H} \Phi_{i n} T=t_{1}{ }^{H} \Phi_{i n} T \\
\rightarrow i_{i}{ }^{T} T^{-1}=t_{1}{ }^{H} \Phi_{i n} T T^{-1}=t_{1}{ }^{H} \Phi_{i n}
\end{gathered}
$$

as we know about $a_{\text {mSINR }}$ and the conclusions we shown before:

$$
\begin{gathered}
a_{m S I N R}=\frac{\lambda_{1}}{1+\lambda_{1}} i_{i} i_{i}^{T} T^{-1} i_{i}=\frac{\lambda_{1}}{1+\lambda_{1}} i_{i} t_{1}{ }^{H} \Phi_{i n} i_{i} \\
h_{m S I N R}=T a_{m S I N R}=\frac{\lambda_{1}}{1+\lambda_{1}} T i_{i} t_{1}{ }^{H} \Phi_{i n} i_{i}
\end{gathered}
$$

now we use the identity (1) that we mention earlier:

$$
h_{m S I N R}=\frac{\lambda_{1}}{1+\lambda_{1}} t_{1} t_{1}{ }^{H} \Phi_{i n} i_{i}
$$

6.19

Show that the Wiener filter can be expressed as

$$
\mathbf{h}_{\mathrm{W}}=\sum_{i=1}^{R_{x}} \frac{\lambda_{i}}{1+\lambda_{i}} \mathbf{t}_{\mathbf{t}} \mathbf{t}_{i}^{H} \boldsymbol{\Phi}_{\mathrm{in}} \mathbf{i}_{\mathbf{i}} .
$$

Solution:

first of all we know from the definition of T :

$$
\begin{gathered}
\text { (1).Ti }=t_{1} \\
\text { (2). } T^{H} \Phi_{i n} T=I_{M} \\
\rightarrow i_{i}{ }^{T}=i_{i}{ }^{T} I_{M}=i_{i}{ }^{T} T^{H} \Phi_{i n} T=\left(T i_{i}\right)^{H} \Phi_{i n} T=t_{1}{ }^{H} \Phi_{i n} T \\
\rightarrow i_{i}{ }^{T} T^{-1}=t_{1}{ }^{H} \Phi_{i n} T T^{-1}=t_{1}{ }^{H} \Phi_{i n}
\end{gathered}
$$

as we know about a_{W} and the conclusions we shown before:

$$
\begin{gathered}
a_{W}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{i} i_{i}{ }^{T} T^{-1} i_{i}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{i} t_{1}{ }^{H} \Phi_{i n} i_{i} \\
h_{w}=T a_{W}=T \sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{i} t_{1}{ }^{H} \Phi_{i n} i_{i}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} T i_{i} t_{1}{ }^{H} \Phi_{i n} i_{i}
\end{gathered}
$$

now we use the identity (1) that we mention earlier:

$$
h_{w}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} t_{1} t_{1}{ }^{H} \Phi_{i n} i_{i}
$$

6.20

Show that with the Wiener filter \mathbf{h}_{W}, the MMSE is given by

$$
\begin{aligned}
J\left(\mathbf{h}_{\mathrm{W}}\right) & =\mathbf{i}_{\mathbf{T}}^{H} \boldsymbol{\Lambda} \mathbf{i}_{\mathbf{T}}-\sum_{i=1}^{R_{x}} \frac{\lambda_{i}^{2}}{1+\lambda_{i}}\left|\mathbf{i}_{\mathbf{T}}^{H} \mathbf{i}_{i}\right|^{2} \\
& =\sum_{i=1}^{R_{x}} \frac{\lambda_{i}}{1+\lambda_{i}}\left|\mathbf{i}_{\mathbf{T}}^{H} \mathbf{i}_{i}\right|^{2} .
\end{aligned}
$$

Solution:

As was shown before:

$$
J\left(h_{W}\right)=J\left(a_{W}\right)
$$

we also know :

$$
\begin{gathered}
a_{W}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{i} i_{i}{ }^{T} i_{T} \\
a_{W}{ }^{H}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{T}{ }^{H} i_{i} i_{i}{ }^{T}
\end{gathered}
$$

so we will calculate $J\left(a_{W}\right)$:

$$
\begin{gathered}
J\left(a_{W}\right)=\left(a_{w}-i_{T}\right)^{H} \Lambda\left(a_{w}-i_{T}\right)+a_{W}{ }^{H} a_{W}= \\
=i_{T}{ }^{H} \Lambda i_{T}+a_{W}{ }^{H} \Lambda a_{W}-i_{T}{ }^{H} \Lambda a_{W}-a_{W}{ }^{H} \Lambda i_{T}+a_{W}{ }^{H} a_{W}
\end{gathered}
$$

now let's calculate each part separately:

$$
\begin{gathered}
a_{W}{ }^{H} a_{W}=\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2} i_{T}{ }^{H} i_{i} i_{i}{ }^{T} i_{i} i_{i}{ }^{T} i_{T}=\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2}\left|i_{T}{ }^{H} i_{i}\right|^{2} \\
i_{T}{ }^{H} \Lambda a_{W}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{T}{ }^{H} \Lambda i_{i} i_{i}{ }^{T} i_{T}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}} i_{T}{ }^{H} i_{i} i_{i}{ }^{T} i_{i} i_{i}{ }^{T} i_{T}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\left|i_{T}{ }^{H} i_{i}\right|^{2} \\
a_{W}{ }^{H} \Lambda i_{T}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}} i_{T}{ }^{H} i_{i} i_{i}{ }^{T} \Lambda i_{T}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}} i_{T}{ }^{H} i_{i} i_{i}{ }^{T} i_{i} i_{i}{ }^{T} i_{T}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\left|i_{T}{ }^{H} i_{i}\right|^{2} \\
a_{W}{ }^{H} \Lambda a_{W}=\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2} \lambda_{i} i_{T}{ }^{H} i_{i} i_{i}{ }^{T} i_{i} i_{i}{ }^{T} i_{T}=\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2} \lambda_{i}\left|i_{T}{ }^{H} i_{i}\right|^{2}
\end{gathered}
$$

We will put everything into our expression:

$$
\begin{gathered}
\left.J\left(a_{W}\right)=i_{T}{ }^{H} \Lambda i_{T}+\sum_{i=1}^{R_{X}}\left(\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2}+\lambda_{i}\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2}-2 \frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\right)\left|i_{T}{ }^{H} i_{i}\right|^{2}=i_{T}{ }^{H} \Lambda i_{T}+\sum_{i=1}^{R_{X}}\left(\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2}\left(1+\lambda_{i}\right)-2\left(1+\lambda_{i}\right)\left(\frac{\lambda_{i}}{1+\lambda_{i}}\right)^{2}\right) \right\rvert\, \\
=i_{T}{ }^{H} \Lambda i_{T}+\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}-2 \frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\right)\left|i_{T}{ }^{H} i_{i}\right|^{2}=i_{T}{ }^{H} \Lambda i_{T}-\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\right)\left|i_{T}{ }^{H} i_{i}\right|^{2}
\end{gathered}
$$

finally let's simplify the expression:
$J\left(h_{W}\right)=i_{T}{ }^{H} \Lambda i_{T}-\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\right)\left|i_{T}{ }^{H} i_{i}\right|^{2}=\sum_{i=1}^{R_{X}} \lambda_{i}\left|i_{T}{ }^{H} i_{i}\right|^{2}-\sum_{i=1}^{R_{X}}\left(\frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\right)\left|i_{T}{ }^{H} i_{i}\right|^{2}=\sum_{i=1}^{R_{X}}\left(\lambda_{i}-\frac{\lambda_{i}{ }^{2}}{1+\lambda_{i}}\right)\left|i_{T}{ }^{H} i_{i}\right|^{2}=\sum_{i=1}^{R_{X}} \frac{\lambda_{i}}{1+\lambda_{i}}\left|i_{T}{ }^{H} i_{i}\right|^{2}$

6.22

Show that the class of filters \mathbf{a}_{Q} compromises in between large values of the output SINR and small values of the MSE, i.e.,

$$
\begin{gathered}
(a) i S N R \leq o I S N R\left(a_{R_{X}}\right) \leq o I S N R\left(a_{R_{X}-1}\right) \leq \cdots \leq o I S N R\left(a_{1}\right)=\lambda_{1} \\
\text { (b) } J\left(a_{R_{X}}\right) \leq J\left(a_{R_{X}-1}\right) \leq \cdots \leq J\left(a_{1}\right)
\end{gathered}
$$

Solution:

first of all we will use the following property:
Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{M} \geq 0$

$$
\frac{\sum_{i=1}^{M}\left|a_{i}\right|^{2} \lambda_{i}}{\sum_{i=1}^{M}\left|a_{i}\right|^{2}} \leq \frac{\sum_{i=1}^{M-1}\left|a_{i}\right|^{2} \lambda_{i}}{\sum_{i=1}^{M-1}\left|a_{i}\right|^{2}} \leq \cdots \leq \frac{\sum_{i=1}^{2}\left|a_{i}\right|^{2} \lambda_{i}}{\sum_{i=1}^{2}\left|a_{i}\right|^{2}} \leq \lambda_{1}
$$

now we can define a class of filters that have the following form:

$$
a_{Q}=\sum_{q=1}^{Q} \frac{\lambda_{q}}{1+\lambda_{q}} i_{q} i_{q}{ }^{T} T^{-1} i_{i}
$$

where $1 \leq Q \leq R_{X}$ we can easly see:

$$
\begin{gathered}
h_{1}=h_{m S I N R, 2} \\
h_{R_{X}}=h_{W}
\end{gathered}
$$

from the property we shown earlier it is easy to see that:

$$
i S N R \leq o S N R\left(a_{R_{X}}\right) \leq o S N R\left(a_{R_{X}-1}\right) \leq \cdots \leq o S N R\left(a_{1}\right)=\lambda_{1}
$$

now it is easy to compute the MSE:

$$
J\left(a_{Q}\right)=i_{T}{ }^{H} \Lambda i_{T}-\sum_{q=1}^{Q} \frac{\lambda_{q}{ }^{2}}{1+\lambda_{q}}\left|i_{T}{ }^{H} i_{q}\right|^{2}=\sum_{q=1}^{Q} \frac{\lambda_{q}{ }^{2}}{1+\lambda_{q}}\left|i_{T}{ }^{H} i_{q}\right|^{2}+\sum_{i=Q+1}^{R_{X}} \lambda_{i}\left|i_{T}{ }^{H} i_{q}\right|^{2}
$$

so finally we can deduce that:

$$
J\left(a_{R_{X}}\right) \leq J\left(a_{R_{X}-1}\right) \leq \cdots \leq J\left(a_{1}\right)
$$

