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6 An Exhaustive Class of Linear Filters

6.1
Show that the Wiener filter can be expressed as

hW =
(
IM −Φ−1

y Φin

)
ii.

Solution:
as we know from (6.35):

hW = Φy
−1Φxii

which Φy is :
Φy = Φx + Φin ⇒ Φx = Φy − Φin

place this conclusion in (6.35) :

hW = Φy
−1(Φy − Φin)ii = (Φy

−1Φy − Φy
−1Φin)ii = (IM − Φy

−1Φin)ii

�

6.2
Using Woodbury’s identity, show that

Φ−1
y = Φ−1

in −Φ−1
in Q′x

(
Λ′−1

x + Q′Hx Φ−1
in Q′x

)−1
Q′Hx Φ−1

in .

Solution:
we write Φx with his eigenvalue decomposition :

Φx = Qx
′
Λx

′
Qx

′H

now we can express Φy
−1 as:

Φy
−1 = (Φin + Φx)

−1
= (Φin +Qx

′
Λx

′
Qx

′H)
−1

woodbury identity determines that:
if:
Φin a M ×M reversible matrix
Λx

′
a Rx ×Rx reversible matrix

Qx
′
a M ×Rx matrix

Qx
′H a Rx ×m matrix

so:

(Φin +Qx
′
Λx

′
Qx

′H)
−1

= Φin
−1 − Φin

−1Qx
′
(Λx

′−1
+Qx

′HΦin
−1Qx

′
)
−1

Qx
′HΦin

−1

→ Φy
−1 = Φin

−1 − Φin
−1Qx

′
(Λx

′−1
+Qx

′HΦin
−1Qx

′
)
−1

Qx
′HΦin

−1

�
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6.4
Show that the MVDR filter is given by

hMVDR = Φ−1
in Q′x

(
Q′Hx Φ−1

in Q′x
)−1

Q′Hx ii.

Solution:
in order to find the MVDR filter we will solve the following minimization:
minh[Jn(h) + Ji(h)] subject to hHQx

′
= iiQx

′

using Lagrange multiplier we define the next function:

L(h, λ) = f(n)− λg(h)

where λ is a 1×Rx vector and :

f(h) = Jn(h) + Ji(h) = Φvoh
Hh+ hHΦvh = hHΦinh

g(h) = iiQx
′
− hHQx

′

now we will find the minimum of L :

∂L(h, λ)

∂h
= 2Φinh−Qx

′
λT = 0→ h =

1

2
Φin
−1Qx

′
λT

∂L(h, λ)

∂λ
= hHQx

′
− iiTQx

′
= 0→ hHQx

′
= ii

TQx
′
→ Qx

′Hh = Qx
′H ii

Qx
′Hh =

1

2
Qx

′HΦin
−1Qx

′
λT = Qx

′H ii → λT = 2(Qx
′HΦin

−1Qx
′
)
−1
Qx

′H ii

→ h =
1

2
Φin
−1Qx

′
λT = Φin

−1Qx
′
(Qx

′HΦin
−1Qx

′
)
−1
Qx

′H ii

�

6.5
Show that the MVDR filter can be expressed as

hMVDR = Φ−1
y Q′x

(
Q′Hx Φ−1

y Q′x
)−1

Q′Hx ii.

Solution:
the MVDR filter is given from the minimiazion of [Jn(h) + Ji(h)]
since [Jd(h)] equals 0:

[Jn(h) + Ji(h)] = [Jn(h) + Ji(h) + Jd(h)] =

= φx1 + hHΦyh− hHΦxii − iiTΦxh

after the derivative by h all the elements reduce/reset exept from ∂hHΦyh
d∂

so we continue the previous algorithm with:
f(x) = hHΦyh

so the result is:

h = Φy
−1Qx

′
(Qx

′HΦy
−1Qx

′
)
−1
Qx

′H ii

�
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6.7
Show that the tradeoff filter can be expressed as

hT,µ = Φ−1
in Q′x

(
µΛ′−1

x + Q′Hx Φ−1
in Q′x

)−1
Q′Hx ii.

Solution:
we know that the tradeoff filter is:

hT,µ = [Φx + µΦin]
−1

Φxii

we use the eigenvalue decomposition of Φx :

Φx = Qx
′
Λx

′
Qx

′H

so we get:

hT,µ = [Φx + µΦin]
−1

Φxii = [µΦin +Qx
′
Λx

′
Qx

′H ]
−1
Qx

′
Λx

′
Qx

′H ii

we will also use the following statement which we prove later:

(A+ V CU)
−1
U = A−1U(C−1 + V A−1U)

−1
C−1

which: A a M ×M reversible matrix
C a Rx ×Rx reversible matrix
U a M ×Rx matrix
V a Rx ×m matrix
so we got:

hT,µ = [µΦin +Qx
′
Λx

′
Qx

′H ]
−1
Qx

′
Λx

′
Qx

′H ii =
1

µ
Φin
−1Qx

′
(Λx

′−1
+

1

µ
Qx

′HΦin
−1Qx

′
)
−1

Λx
′−1

Λx
′
Qx

′H ii

hT,µ = Φin
−1Qx

′
(µΛx

′−1
+Qx

′HΦin
−1Qx

′
)
−1

Qx
′H ii

�

prove for the statement we used:

(A+ UCV )
−1
U = (A−1 −A−1U(C−1 + V A−1U)

−1
V A−1)U =

= A−1U −A−1U(C−1 + V A−1U)
−1
V A−1U = A−1U(C−1 + V A−1U)

−1
[C−1 + V A−1U − V A−1U ] =

= A−1U(C−1 + V A−1U)
−1
C−1

�

6.8
Show that the LCMV filter is given by

hLCMV = Φ−1
in Cxv1

(
CH

xv1
Φ−1

in Cxv1

)−1
ic.

Solution:
in order to find the LCMV filter we will solve the following minimization:
minh[Jn(h) + Ji(h)] subject to hHCxv1

′
= ii

using Lagrange multiplier we define the next function:

L(h, λ) = f(n)− λg(h)

where λ is a 1×Rx vector and :

f(h) = Jn(h) + Ji(h) = Φvoh
Hh+ hHΦvh = hHΦinh

g(h) = ii − hHCxv1

′
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now we will find the minimum of L :

∂L(h, λ)

∂h
= 2Φinh− Cxv1

′
λT = 0→ h =

1

2
Φin
−1Cxv1

′
λT

∂L(h, λ)

∂λ
= hHCxv1

′
− iiTCxv1

′
= 0→ hHCxv1

′
= ii

TCxv1

′
→ Cxv1

′Hh = Cxv1

′H ii

Cxv1

′Hh =
1

2
Cxv1

′HΦin
−1Cxv1

′
λT = Cxv1

′H ii → λT = 2(Cxv1

′HΦin
−1Cxv1

′
)
−1
Cxv1

′H ii

→ hLCMV =
1

2
Φin
−1Cxv1

′
λT = Φin

−1Cxv1

′
(Cxv1

′HΦin
−1Cxv1

′
)
−1
Cxv1

′H ii

�

6.10
Show that the LCMV filter can be expressed as

hLCMV = Q′′v1
Φ′−1

in Q′′Hv1
Q′x
(
Q′Hx Q′′v1

Φ′−1
in Q′′Hv1

Q′x
)−1

Q′Hx ii.

Solution:
in order to find the LCMV filter a we will solve the following minimization:
minh[Jn(a) + Ji(a)] subject to iiTQx

′
= aHQv1

′′HQx
′

using Lagrange multiplier we define the next function:

L(h, λ) = f(n)− λg(h)

where λ is a 1×Rx vector and :

f(a) = Jn(a) + Ji(a) = Φvoa
Ha+ aHΦvh = hHΦinh

g(a) = ii
TQx

′
− aHQv1

′′HQx
′

now we will find the minimum of L :

∂L(a, λ)

∂a
= 2Φina−Qv1

′′HQx
′
λT = 0→ a =

1

2
Φin
−1Qv1

′′HQx
′
λT

∂L(a, λ)

∂λ
= 0→ g(a) = 0→ aHQv1

′′HQx
′

= ii
TQx

′
→ Qv1

′′
Qx

′H
a = Qx

′H ii

Qv1

′′
Qx

′H
a =

1

2
Qv1

′′
Qx

′H
Φin
−1Qv1

′′HQx
′
λT = Qx

′H ii → λT = 2(Qv1

′′
Qx

′H
Φin
−1Qv1

′′HQx
′
)
−1

Qx
′H ii

→ aLMCV = Φin
−1Qv1

′′HQx
′
(Qv1

′′
Qx

′H
Φin
−1Qv1

′′HQx
′
)
−1

Qx
′H ii

�

6.11
Show that the maximum SINR filter with minimum distortion is given by

hmSINR =
t1t

H
1 Φxii
λ1

= t1t
H
1 Φinii.

Solution:
we know the maximum SINR filter is given by:

hmSINR = t1ς

where ς is an arbitrary complex number, determine by solving the following minimization :
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Jd(hmSINR) = Φx1 + λ1|ς|2 − ς∗t1HΦxii − ςiiTΦxt1

∂Jd
∂ς∗

= 2λ1ς − t1HΦxii − (ii
TΦxt1)

H
= 0

2λ1ς − t1HΦxii − t1HΦxii = 0→ ς =
t1
HΦxii
λ1

so the maximum SINR filter is:

hsSINR =
t1t1

HΦxii
λ1

�

6.13
Show that the output SINR can be expressed as

oSINR (a) =
aHΛa

aHa

=

∑Rx

i=1 |ai|
2
λi∑M

m=1 |am|
2
.

Solution:
let’s remember the definition of oSINR:

oSINR =
hHΦxh

hHΦinh

where h writed in a basis formed:

h = Ta

from (6.83) and (6.84):

THΦxT = Λ

THΦinT = IM

we use all of that and substituting at the definition of oSINR:

hHΦxh

hHΦinh
=

aHTHΦxTa

aHTHΦinTa
=

aHΛa

aHIMa

→ oSINR =
aHΛa

aHa

�

6.14
Show that the transformed identity filter, iT, does not affect the observations, i.e., z = iHTTHy = y1 and oSINR (iT) = iSINR.
Solution:
we know that z is :

z = aHTHy

for a = iT we get:

z = iT
HTHy = (T−1ii)

H
THy = ii

HT−1HTHy = iiy

→ z = y1

�
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6.16
Show that the MSE can be expressed as

J (a) = (a− iT)
H

Λ (a− iT) + aHa.

Solution:
as we know from (6.83):

THΦxT = Λ→ Φx = TH−1ΛT−1

φx1 = ii
HΦxii → φx1 = ii

HTH−1ΛT−1ii

now we will simplify the MSE from section 6.15:

J(a) = φx1 − aHΛiT − iTΛa+ ah(Λ + IM )a

as we prove before:

φx1 = ii
HTH−1ΛT−1ii = (T−1ii)

H
Λ
(
T−1ii

)
→ φx1 = iT

HΛiT

→ J(a) = φx1 − aHΛiT − iTΛa+ ah(Λ + IM )a = iT
HΛiT − aHΛiT − iTΛa+ ahΛa+ ahIMa

= aHΛ(a− iT )− iTHΛ(a− iT ) + aHa = (aHΛ− iTHΛ)(a− iT ) + aHa =

= (aH − iTH)Λ(a− iT ) + aHa = (a− iT )
H

Λ(a− iT ) + aHa

J(a) = (a− iT )
H

Λ(a− iT ) + aHa

�

6.17
Show that the maximum SINR filter with minimum MSE is given by

hmSINR,2 =
λ1

1 + λ1
t1t

H
1 Φinii.

Solution:
first of all we know from the definition of T :

(1).T ii = t1

(2).THΦinT = IM

→ ii
T = ii

T IM = ii
TTHΦinT = (Tii)

H
ΦinT = t1

HΦinT

→ ii
TT−1 = t1

HΦinTT
−1 = t1

HΦin

as we know about amSINR and the conclusions we shown before:

amSINR =
λ1

1 + λ1
iiii

TT−1ii =
λ1

1 + λ1
iit1

HΦinii

hmSINR = TamSINR =
λ1

1 + λ1
Tiit1

HΦinii

now we use the identity (1) that we mention earlier:

hmSINR =
λ1

1 + λ1
t1t1

HΦinii

�
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6.19
Show that the Wiener filter can be expressed as

hW =

Rx∑
i=1

λi
1 + λi

tit
H
i Φinii.

Solution:
first of all we know from the definition of T :

(1).T ii = t1

(2).THΦinT = IM

→ ii
T = ii

T IM = ii
TTHΦinT = (Tii)

H
ΦinT = t1

HΦinT

→ ii
TT−1 = t1

HΦinTT
−1 = t1

HΦin

as we know about aW and the conclusions we shown before:

aW =

RX∑
i=1

λi
1 + λi

iiii
TT−1ii =

RX∑
i=1

λi
1 + λi

iit1
HΦinii

hw = TaW = T

RX∑
i=1

λi
1 + λi

iit1
HΦinii =

RX∑
i=1

λi
1 + λi

Tiit1
HΦinii

now we use the identity (1) that we mention earlier:

hw =

RX∑
i=1

λi
1 + λi

t1t1
HΦinii

�

6.20
Show that with the Wiener filter hW, the MMSE is given by

J (hW) = iHTΛiT −
Rx∑
i=1

λ2
i

1 + λi

∣∣iHT ii
∣∣2

=

Rx∑
i=1

λi
1 + λi

∣∣iHT ii
∣∣2 .

Solution:
As was shown before:

J(hW ) = J(aW )

we also know :

aW =

RX∑
i=1

λi
1 + λi

iiii
T iT

aW
H =

RX∑
i=1

λi
1 + λi

iT
H iiii

T

so we will calculate J(aW ) :

J(aW ) = (aw − iT )
H

Λ(aw − iT ) + aW
HaW =

= iT
HΛiT + aW

HΛaW − iTHΛaW − aWHΛiT + aW
HaW

now let’s calculate each part separately:
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aW
HaW =

RX∑
i=1

(
λi

1 + λi
)
2
iT
H iiii

T iiii
T iT =

RX∑
i=1

(
λi

1 + λi
)
2∣∣iTH ii∣∣2

iT
HΛaW =

RX∑
i=1

λi
1 + λi

iT
HΛiiii

T iT =

RX∑
i=1

λi
2

1 + λi
iT
H iiii

T iiii
T iT =

RX∑
i=1

λi
2

1 + λi

∣∣iTH ii∣∣2
aW

HΛiT =

RX∑
i=1

λi
1 + λi

iT
H iiii

TΛiT =

RX∑
i=1

λi
2

1 + λi
iT
H iiii

T iiii
T iT =

RX∑
i=1

λi
2

1 + λi

∣∣iTH ii∣∣2
aW

HΛaW =

RX∑
i=1

(
λi

1 + λi
)
2
λiiT

H iiii
T iiii

T iT =

RX∑
i=1

(
λi

1 + λi
)
2
λi
∣∣iTH ii∣∣2

We will put everything into our expression:

J(aW ) = iT
HΛiT+

RX∑
i=1

((
λi

1 + λi

)2

+ λi

(
λi

1 + λi

)2

− 2
λi

2

1 + λi

)∣∣iTH ii∣∣2 = iT
HΛiT+

RX∑
i=1

((
λi

1 + λi

)2

(1 + λi)− 2(1 + λi)

(
λi

1 + λi

)2
)∣∣iTH ii∣∣2 =

= iT
HΛiT +

RX∑
i=1

(
λi

2

1 + λi
− 2

λi
2

1 + λi

)∣∣iTH ii∣∣2 = iT
HΛiT −

RX∑
i=1

(
λi

2

1 + λi

)∣∣iTH ii∣∣2
finally let’s simplify the expression:

J(hW ) = iT
HΛiT−

RX∑
i=1

(
λi

2

1 + λi

)∣∣iTH ii∣∣2 =

RX∑
i=1

λi
∣∣iTH ii∣∣2−RX∑

i=1

(
λi

2

1 + λi

)∣∣iTH ii∣∣2 =

RX∑
i=1

(
λi −

λi
2

1 + λi

)∣∣iTH ii∣∣2 =

RX∑
i=1

λi
1 + λi

∣∣iTH ii∣∣2
.

�

6.22
Show that the class of filters aQ compromises in between large values of the output SINR and small values of the MSE, i.e.,

(a)iSNR ≤ oISNR(aRX
) ≤ oISNR(aRX−1) ≤ · · · ≤ oISNR(a1) = λ1

(b)J(aRX
) ≤ J(aRX−1) ≤ · · · ≤ J(a1)

Solution:
first of all we will use the following property:
Let λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0

M∑
i=1

|ai|2λi
M∑
i=1

|ai|2
≤

M−1∑
i=1

|ai|2λi
M−1∑
i=1

|ai|2
≤ · · · ≤

2∑
i=1

|ai|2λi
2∑
i=1

|ai|2
≤ λ1

now we can define a class of filters that have the following form:

aQ =

Q∑
q=1

λq
1 + λq

iqiq
TT−1ii

where 1 ≤ Q ≤ RX we can easly see:

h1 = hmSINR,2

hRX
= hW

from the property we shown earlier it is easy to see that:
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iSNR ≤ oSNR(aRX
) ≤ oSNR(aRX−1) ≤ · · · ≤ oSNR(a1) = λ1

�

now it is easy to compute the MSE:

J(aQ) = iT
HΛiT −

Q∑
q=1

λq
2

1 + λq

∣∣iTH iq∣∣2 =

Q∑
q=1

λq
2

1 + λq

∣∣iTH iq∣∣2 +

RX∑
i=Q+1

λi
∣∣iTH iq∣∣2

so finally we can deduce that:

J(aRX
) ≤ J(aRX−1) ≤ · · · ≤ J(a1)

�
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