Data Integration，Simplified

Luc Pezet，v． 1

March 31， 2014

Definition 1．Let D be the set of all documents．Documents may belong to Source data or Target data．

Definition 2．Let $T \subseteq D$ be a set of integration results，i．e．the Target set．T is generally considered to be the final result of compiling multiple Source sets through successive integration steps．

Definition 3．Let $S \subseteq D$ be a set of Source documents considered for integra－ tion into a Target set．

Definition 4．Let rep $: S, T_{i} \mapsto\{0,1\}$ such that for $x \in S, y \in T_{i}$ ，

$$
\operatorname{rep}_{i}(x, y)= \begin{cases}1 & \text { if } x \text { and } y \text { represent the same document } \\ 0 & \text { otherwise }\end{cases}
$$

Definition 5．Let Υ_{i} be a function that creates a document in T_{i+1} from a document of S ．Formally，let $\Upsilon_{i}: S \mapsto T_{i+1}$ such that for $x \in S$ ，

$$
\Upsilon_{i}(x)=y \mid y \in T_{i+1} \wedge r e p_{i+1}(x, y)=1
$$

Definition 6．Let \mathbb{I}_{i} be a function that modfies a document from T_{i} using a document from S into T_{i+1} ．Formally，let $\mathbb{I}_{i}: S, T_{i} \mapsto T_{i+1}$ such that for $x \in S, y \in T_{i}, r e p_{i}(x, y)=1$

$$
\mathbb{\Pi}_{i}(x, y)=z \mid z \in T_{i+1} \wedge \operatorname{rep}_{i+1}(x, z)=1
$$

Definition 7．Let $万_{i}: S \mapsto T_{i+1}$ the integration function of $x \in S$ with documents in T_{i} into T_{i+1} ，such that $\forall x \in S$ ，

$$
\varpi_{i}(x)= \begin{cases}\Upsilon_{i}(x)=z & \text { if } \forall y \in T_{i}, \operatorname{rep}_{i}(x, y)=0 \\ \mathbb{\Pi}_{i}(x, y)=y^{\prime} & \text { if } \exists y \in T_{i}, \operatorname{rep}_{i}(x, y)=1\end{cases}
$$

Lemma 1．The function $\bar{万}_{i}$ is idempotent if and only if the subsequent inte－ grations leads only to the II functions．Formally，

$$
万_{i}(x) \text { idemptotent } \Longleftrightarrow 万_{i+1}(x)=\mathbb{I}_{i+1}(x, y)
$$

Proof．If for $x \in S$ and $\forall y \in T_{i}, \operatorname{rep}_{i}(x, y)=0$,

$$
\begin{align*}
& \Longrightarrow 万_{i}(x)=\Upsilon(x)=z \tag{1}\\
& \Longrightarrow \exists z \in T_{i+1} \mid \operatorname{rep}_{i+1}(x, z)=1 \tag{2}\\
& \Longrightarrow 万_{i+1}(x)=\mathbb{K}_{i+1}(x, z)
\end{align*}
$$

If for $x \in S, \exists y \in T_{i} \mid \operatorname{rep}(x, y)=1$,

$$
\begin{align*}
& \Longrightarrow \boldsymbol{Z}_{i}(x)=\mathbb{I}_{i}(x, y)=y^{\prime} \tag{3}\\
& \Longrightarrow \exists y^{\prime} \in T_{i+1} \mid \operatorname{rep}_{i+1}\left(x, y^{\prime}\right)=1 \quad \Longrightarrow \boldsymbol{Z}_{i+1}(x)=\mathbb{I}_{i+1}(x, y) \tag{4}
\end{align*}
$$

