Assignment 6

Frank Yang

February 8, 2014

1 Homework list

- Section 3.3: 2, 12, 24
- Section 4.1: 26ac
- Section 4.2: 6ab, 12cdef

2 Solution

2 We give a proof by induction. Let $S(n)=1+5+9+\ldots+(4 n-3)$, where n is a positive integer. We want to prove that for every n, $S(n)=2 n^{2}-n$.
Basis step: $S(1)=2 \times 1^{2}-1=1$, which is same with sum of 1 .
Inductive step: Assume $S(k)=2 k^{2}-k$. We want to show $S(k+1)=2(k+1)^{2}-k$.

$$
\begin{gathered}
S(k+1)=1+5+9+\ldots+(4 k-3)+(4(k+1)-3)=S(k)+4(k+1)-3 \\
S(k+1)=2 k^{2}-k+4(k+1)-3=2 k^{2}+4 k+2-1-k \\
2 k^{2}+4 k+2-1-k=2\left(k^{2}+2 k+1\right)-1-k=2(k+1)^{2}-(k+1)
\end{gathered}
$$

So, we have shown that if $S(k)=2 k^{2}-k$, then $S(k+1)=2(k+1)^{2}-k$. Since the statement is also true for the basis case, $S(n)=2 n^{2}-n$ for every positive integer n .

12 We give a proof by induction. Let $b(n)=1 / 3+1 / 15+\ldots+1 /\left(4 n^{2}-1\right)$, where n is a positive integer.
(a) $b_{1}=1 / 3, b_{2}=2 / 5, b_{3}=3 / 7, b_{4}=4 / 9, b_{5}=5 / 11$
(b) $b_{n}=n /(2 n+1)$
(c) We give a proof by induction. We want to prove that for every n , $b_{n}=n /(2 n+1)$.

Basis step: $b_{1}=1 /(2 \times 1+1)=1 / 3$, which is the same with sum of $1 /\left(4 \times 1^{2}-1\right)=1 / 3$.
Inductive step: Assume $b_{k}=k /(2 k+1)$. We want to show $b_{k+1}=(k+1) /(2(k+1)+1)=(k+1) /(2 k+3)$.

$$
\begin{gathered}
b_{k+1}=b_{k}+1 /\left(4(k+1)^{2}-1\right)=k /(2 k+1)+1 /\left(4(k+1)^{2}-1\right) \\
=k /(2 k+1)+1 /\left(4 k^{2}+8 k+3\right)=k /(2 k+1)+1 /((2 k+1)(2 k+3)) \\
=k(2 k+3) /((2 k+1)(2 k+3))+1 /\left((2 k+1)(2 k+3)=\left(2 k^{2}+3 k+1\right) /((2 k+1)(2 k+3))\right. \\
=(k+1)(2 k+1) /((2 k+1)(2 k+3)) \\
=(k+1) /(2 k+3)
\end{gathered}
$$

We have shown that if $b_{k}=k /(2 k+1)$, then $b_{k+1}=(k+1) /(2(k+1)+1)=(k+1) /(2 k+3)$. Since the statement is also true for the basis case, $b_{n}=n /(2 n+1)$ for every positive integer n .
(d) Based on our previous proof, the statement is equivalent as b_{∞} converges. Since $\lim _{n \rightarrow \infty} b_{n}=$ $\lim _{n \rightarrow \infty} n /(2 n+1)=1 / 2$. The sum of this series converges to $1 / 2$.

24 We give a proof by induction. Let f_{n} be the nth Fibonacci, where n is a integer ≥ 0. We want to show that for every n, $f_{n}<2^{n}$.
Basis step: $f_{0}=0$, which is less then $2^{0}=1$. $f_{1}=1$, which is less then $2^{1}=2$.
Inductive step: Assume $f_{k}<2^{k}$ and $f_{k+1}<2^{k+1}$. We want to show $f_{k+2}<2^{k+2}$.

$$
f_{k+2}=f_{k}+f_{k+1}<2^{k}+2^{k+1}<2^{k+1}+2^{k+1}=2^{k+2}
$$

We have shown that if $f_{k}<2^{k}$ and $f_{k+1}<2^{k+1}$, then $f_{k+2}<2^{k+2}$. Since the statement is also true for the two basis cases, $f_{n}<2^{n}$ for all n .

26a We give a proof by induction.
We want to prove for all $I, A \cap\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I}\left(A \cap A_{i}\right)$.
Basis Step: Assume there are only two sets in A_{i} family, A_{1} and A_{2}. From basic set identities, we know that $A \cap\left(A_{1} \cup A_{2}\right)=\left(A \cap A_{1}\right) \cup\left(A \cap A_{2}\right)$. Thus, the statement is true for basis case.
Inductive step: Assume for any integer $k>2, A \cap\left(\bigcup_{i \in k} A_{i}\right)=\bigcup_{i \in k}\left(A \cap A_{i}\right)$. We are going to show that $A \cap\left(\bigcup_{i \in k+1} A_{i}\right)=\bigcup_{i \in k+1}\left(A \cap A_{i}\right)$.

$$
A \cap\left(\bigcup_{i \in k+1} A_{i}\right)=A \cap\left(\bigcup_{i \in k} A_{i} \cup A_{k+1}\right)
$$

Since $\bigcup_{i \in k} A_{i}$ can be treated as a single set,

$$
\begin{gathered}
A \cap\left(\bigcup_{i \in k} A_{i} \cup A_{k+1}\right)=\left(A \cap \bigcup_{i \in k} A_{i}\right) \cup\left(A \cap A_{k+1}\right) \\
=\bigcup_{i \in k}\left(A \cap A_{i}\right) \cup\left(A \cap A_{k+1}\right) \\
=\bigcup_{i \in k+1}\left(A \cap A_{i}\right)
\end{gathered}
$$

26c We give a proof by induction.
We want to prove for all $I,\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}$.
Basis Step: Assume there are only two sets in A_{i} family, A_{1} and A_{2}. From basic set identities, we know that $\left(A_{1} \cap A_{2}\right)^{c}=A_{1}^{c} \cup A_{2}^{c}$. Thus, the statement is true for basis case.
Inductive step: Assume for any integer $k>2,\left(\bigcap_{i \in k} A_{i}\right)^{c}=\bigcup_{i \in k} A_{i}^{c}$.
We are going to show that $\left(\bigcap_{i \in k+1} A_{i}\right)^{c}=\bigcup_{i \in k+1} A_{i}^{c}$.

$$
\left(\bigcap_{i \in k+1} A_{i}\right)^{c}=\left(\bigcap_{i \in k} A_{i} \cap A_{k+1}\right)^{c}
$$

Since $\bigcap_{i \in k} A_{i}$ can be treated as a single set,

$$
\left(\bigcap_{i \in k} A_{i} \cap A_{k+1}\right)^{c}=\left(\bigcap_{i \in k} A_{i}\right)^{c} \cup A_{k+1}^{c}
$$

$$
\begin{gathered}
=\left(\bigcup_{i \in k} A_{i}^{c}\right) \cup A_{k+1}^{c} \\
=\bigcup_{i \in k+1} A_{i}^{c}
\end{gathered}
$$

6 (a) not reflexive, symmetric, not antisymmetric, not transitive
(b) reflexive, symmetric, not antisymmetric, not transitive

12 (c) Assume R and S are symmetric and odered pair (a, b) is in $R \cap S$. Then, (a, b) is in R and in S. Since both relations are symmetric, (b, a) is also in R and in S. So ($b, a)$ is in $R \cap S$, which shows $R \cap S$ is symmetric.
(d) Assume R and S are symmetric and odered pair (a, b) is in $R \cup S$. Then, (a, b) is in R or in S. Since both relations are symmetric, (b, a) is also in R or in S. So (b, a) is in $R \cup S$, which shows $R \cup S$ is symmetric.
(e) Assume R and S are transitive and odered pairs $(a, b),(b, c)$ are in $R \cap S$. Then, $(a, b),(b, c)$ are in R and in S. Since both relations are transitive, (a, c) is also in R and in S. So (a, c) is in $R \cap S$, which shows $R \cap S$ is transitive.
(e) Assume R and S are transitive and odered pairs $(a, b),(b, c)$ are in $R \cup S$. Then, $(a, b),(b, c)$ are in R or in S. Since both relations are transitive, (a, c) is in R or in S. So (a, c) is in $R \cup S$, which shows $R \cup S$ is transitive.

