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Chapter 1

Introduction

Structural Dynamics is a field of major importance in the design of every engineering
system to deeply understand its behaviour subjected to dynamic loading. And when it
comes to the concept design of aerospace structures, studying how these dynamic forces
will influence the performance of the vehicle is of great interest as well.

Deeply related to the latter is the second engineering field that must be address dur-
ing the early stages of aircraft design, and that is Aeroelasticity. Aeroelastic phenomena
can have a significant influence on the design of flight vehicles. Indeed, these effects can
greatly alter the design requirements that are specified for the disciplines of performance,
structural loads, flight stability and control, and even propulsion. In addition, aeroelas-
tic phenomena can introduce catastrophic instabilities of the structure that are unique to
aeroelastic interactions and can limit the flight envelope.

The interaction between a lifting surface and the fluid field can eventually lead under
certain conditions to the so-called Flutter phenomenon. Flutter is a dynamic instability,
and it can be regarded as a response to a harmonic auto-excited problem with divergent
oscillations in which aerodynamic forces couple with the normal modes of the structure,
as a result of the interaction of elastic, inertial and aerodynamic forces.

In this document a thorough analysis of flutter will be presented, applied on a wing box
which has been discretized using a FEM tool, MSC. NASTRAN, to cover both the dynamic
structural analysis as well as the aeroelastic solution to flutter. Once the structural part
has been detailed, a discussion about the flutter speed obtained with the Nastran SOL 145
will be presented, followed by some other solutions.

1.1 Structural model

The structure analysed is a typical aircraft wing box that has the following specifications:
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e Length: 6.1 m
e Width: 1.22 m

e Mass: 3283 Kg
On the outtermost rib a pod has been installed:

e Length: 3.05 m
e Mass: 328 Kg

e Inertia: 161.7 Kgm?
Proceeding to the FEM model, the latter has been modelled as follows:

e (6 grids.
e 60 rods.
e 20 surface elements.

e Some other rigid bars to model a pod where a missile will be later installed.

These elements can be seen in Figure 1.1:

1.2 FEM Model

e The model contains the following elements:

e GRID: it is used to define nodes in the space

e CONM2: used to define punctual masses and inertia along with their properties
e CROD: rod elements with tension, compression, and torsional capabilities.

e CQUAD4: surface element that links four nodes.

e RBAR: rigid bar element that links two nodes, being the displacement of one node
dependent from the other one. RBARS elements cannot be deformed.

e RBES3: rigid element that links nodes with independent degrees of freedom and nodes
with dependent degrees of freedom. It is used in order to transmit loads and mass.
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Figure 1.1: FEM Model of the wing box

e SPC: single point constraint. It is used to set boundary conditions in terms of
displacements.

The reference frame used for the construction of the model has the y-axis along the
wing span and the x-axis normal to it. The z-axis is perpendicular to the other two in
order to obtain a right-handed triad.






Chapter 2

Normal Modes

Once the geometric and FEM model has been created, the second step was to edit the
Nastran .bdf file to configure the solution and obtain the normal modes of vibration. For
the latter, the SOL 103 command has been used.

Firstly, the wing box was clamped at the root, editing the bdf file to constrain the
corresponding nodes. Secondly, the rest of the SOL 103 parameters were set to obtain the
natural modes of free vibration below 50 Hz.

The equation of the system, imposing free vibration and zero damping:

[MK{a} + [K]{u} =0 (2.1)
And considering harmonic motion:

{u} = {o}e™ (2.2)

([K] = w*[M]){} =0 (2.3)

Finding the non-trivial roots of this determinant poses an eigenvalue problem, where
A = w?. Nastran solves it finding the eigenvalues to calculate the normal modes.

To extract these eigenvalues the Lanczos method has been set as parameter of the SOL
103 configuration. The fringe of each mode obtained by running the solution is presented
in the next section, along with its natural frequency.
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2.1 Fringe representation of normal modes

(a) Mode 1. First plunge. (b) Mode 2. First torsion.
fn = 1.56H, f, = 2.25H,

Figure 2.1: Modes 1 and 2

(a) Mode 3. Plunge and torsion I. (b) Mode 4. Plunge around z axis.
fn = 6.99H, fn = 8.78H,

Figure 2.2: Modes 3 and 4

a ode 9. Plunge and torsion 1l. ode 6. Plunge and torsion I11.
Mode 5. P1 d ion II b) Mode 6. P1 d ion III
fn=971H, fn=12.12H,

Figure 2.3: Modes 5 and 6
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(a) Mode 7. Plunge and torsion IV. (b) Mode 8. Plunge and torsion V.
Jn=17.08H, fn =21.18H,

Figure 2.4: Modes 7 and 8

(a) Mode 9. Plunge and torsion VI. (b) Mode 10. Plunge and torsion VII.
fn =24.620, fn = 25.67H,

Figure 2.5: Modes 9 and 10

(a) Mode 11. Plunge and torsion VIII. (b) Mode 12. Plunge and torsion IX.
fn=28.62H, fn=31H,

Figure 2.6: Modes 11 and 12
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(a) Mode 13. Plunge and torsion X. (b) Mode 14. Plunge and torsion XI.
fn = 32.8H, fn = 33.87H,

Figure 2.7: Modes 13 and 14

(a) Mode 15. Plunge and torsion XII. (b) Mode 16. Plunge and torsion XIII.
Jn = 38.25H, fn =41.98H,

Figure 2.8: Modes 15 and 16



Chapter 3

Flutter Equation

It is of great importance to know which are the flight conditions under which the structure
suffers instabilities such as divergence or flutter.

In order to find them, a dynamic analysis must be carried out. The equation of a
dynamic system with damping can be expressed as follows:

[Maal{iia()} + [Baal{tta(t)} + [Kaal{ta(t)} = {Fa(t)} (3.1)

Where u, is the vector of nodal displacements of the a-set, M,, is the a-set mass matrix,
B, is the a-set damping matrix, K, is the a-set stiffness matrix and P, is the a-set vector
of nodal aerodynamic forces.

P, can be expressed as a function of the nodal displacements as well:

{P.(t)} = g¢oo /Ot {Haa (%(t - 7), Mm)} {uq(7) }dr, (3.2)

where ¢, is the dynamic pressure( ¢o, = 3pocU2) and H,, is the step response of the

2
system for each nodal displacement.

In order to simplify the analysis, the nodal displacements will be considered to be a
combination of the modes of free vibration ¢,,.

{ua(t)} = [Pan{un(t)} (3-3)

Where wuy(t) are the modal displacements or modal coordinates.

The modes used are the ones below 50 Hz obtained in the previous section. It is
considered that those modes approximate well enough the nodal displacements, as flutter
is a low frequency phenomenon.
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The dynamic equation multiplied by ¢,

[ z:h] {Maa] [¢ah]{uh} + {(ég;h] [Baa] [¢ah]{uh} + [¢§h] [Kaa] [¢ah]{uh}} =

os /0 It [Haa(%(t—f),Moo)l[d)ah]{uh(T)}dT (34)

Or expressing it in terms of the generalized stiffness, mass and aerodynamic response
matrices:

(M) i (£)} + [Bun){itn ()} + K] {un(8)}} =
Goo /Ot {th(w‘” (t—1), Mwﬂ {un()Ydr (3.5)

C

There are different methods to solve these equations. Some of them allow to obtain
more accurate results than others but at higher computational cost. A quick method is
the so-called K-method or V-g method.

3.1 K Method

The main idea of this method is that flutter occurs when one mode reaches simple harmonic
motion, i.e. when the real part of the eigenvalue is 0 (zero damping), while the rest of the
modes are still convergent (damped modes). Keeping in mind this idea, a way to find the
boundary between stable and unstable (the flutter boundary) behaviour is by assuming
harmonic motion.

uh(t) = ﬁhGth (36)

Another fundamental reason to do this is that non-steady aerodynamic forces are very
difficult to calculate. In order to avoid this difficulty, recalling the already mentioned idea
about harmonic motion and flutter, it can be assumed that aerodynamic forces are also
harmonic, which are well known. To study the system motion in the frequency domain a
Laplace transformation is applied to equation 3.5:

(= ]+ il + [ = g | Qun (22000 ) e =0 1)
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Where {uj,(w)} and [Qun (222w, M,)] are the Laplace transforms of {u(t)} and
[Qun(2=t, M)

A few comments are remarkable in order to explain how damping is modeled:

e [t is assumed that the model has no damping, although it is known that it has a
structural damping of 0,03.

e The K method assumes an artificial damping (g) in the sense that it is not a physical
damping present in the structure, but the damping that the structure would require
in order to have harmonic motion as it was assumed before.

e When this artificial damping it is calculated, it is compared with the real one. If the
artificial damping is bigger than the real one, that means that the damping required
to force harmonic motion it is higher than the damping that the structure has, so the
motion will be unstable. On the other hand, if the artificial damping is lower than
the real one, that means that the structure has enough damping to make the motion
convergent.

[Bu] = T2 i) (35)

CW

Introducing the reduced frequency k = TR

where c is the wing chord:

((%%)2[1\4%] — (ignn + 1) [Knn] + %poono[th(k’, Moo)]> {ur} =0 (3.9

As the trivial solution has no interest, the flutter solution is the one that makes the
determinant equal to zero:

det (<2k£]00) [Mhn] = (ignn + 1)[Knn] + %poono[th(/f, Moo)}) =0 (3.10)

The latter is the flutter equation of the wing. As it is a complex equation, the reduced
frequency of each mode (k) and the structural damping required to have harmonic motion
for each mode (g) are obtained as a function of the flight conditions. If the g obtained is
greater than the actual structural damping (gsructure), the response will be unstable. If it
is lower, it will be stable. Therefore the intersections between the (V-g) curve and g =
Jstructure ShOws where the system becomes unstable. Their corresponding flight conditions
are the ones associated to the beginning of flutter and must be avoided during flight.
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The generalized mass and stiffness matrices have been obtained during the modal anal-
ysis of the structure. The eigenvectors have been normalized so that the normalized mass
matrix becomes the identity. Since the eigenvectors satisfy the condition of orthogonal-
ity, the stiffness matrix is also diagonal. Both of them are shown below in the form of
pseudovectors, meaning the diagonal of the matrix.

=
>
— = = e e e e e e e e e e e e
5
s

[9.582-10 |
1.997 - 102
1.929 - 103
4.044 - 103
3.722 - 103
5.803 - 103
1.151 - 104
1.771 - 104
2.393 - 104
2.600 - 104
3.234 - 104
3.796 - 104
4.247 - 104
4.530 - 104
5.775 - 104
5.956 - 10*

3=

The matrix containing the generalized aerodynamic forces Qpp,(k, M4,) has been calcu-
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lated running the Nastran SOL 145 algorithm, which for this case Doublet-Lattice theory
has been applied on every panel section over the wing. The parameter configuration has
been described in section 9.1.

3.2 Static instability: Divergence

After obtaining the flutter equation (3.10) the divergence equation can be easily obtained.
It is only necessary to make £ = 0, as the static case has a null frequency. Later on, the
V-g method results will be shown and this instability will be identified as it is the one with
k=0.
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PK Matched Diagram

In order to obtain the flutter boundary, that is, the velocity at which the phenomenon of
flutter starts, several mathematical methods can be used. For the present report, the PK
method has been applied. It combines the idea of two methods:

e The P method: It solves the equation of flutter directly with non-steady aerodynamics
theories and the unknowns are the real and imaginary parts of the eigenvalues. It is
known from literature to be the most accurate procedure, but it has the disadvantage
that it is not always possible to calculate the unsteady aerodynamic forces.

e The K method: Explained in the previous section. Harmonic motion and harmonic
aerodynamic forces are assumed as a simplification.

In 1971, Hassig demonstrated that the aproximation of harmonic motion and harmonic
aerodynamics forces used in the K method was inadequate in some cases in which the pre-
dictions were wrong. However, the PK method solved this problem relaxing the hypothesis
of harmonic motion, assuming only harmonic aerodynamics forces.

The free-stream air speed U, is obtained as a function of the free-stream density po,
and Mach number M, according to the International Standard Atmosphere. Therefore,
the result obtained is a PK-Matched Diagram.

Nastran has been used to carry out the flutter analysis by using the PKNL method. The
studied case is a cruise flight at M,, = 0.8 and altitude within the range [0km<h<32km|.
Further details can be read in the appendix where the .bdf file is included for Nastran
analysis.

The following diagrams have been obtained:

15
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Figure 4.2: V-f diagram
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Figure 4.1 shows the relation between g and Vgus and figure 4.2 shows the relation
between harmonic oscillation frequency and Vg4g for the first 6 modes of vibration.

4.1 Flutter

The parameter g can be considered as an artificially structural damping. As mentioned
previously, it is the required value of structural damping to have harmonic motion. The
flutter boundary begins at Vgas|futter = 65.87, where the damping of the first mode is
equal to 0.03 (see figure 4.1), which is the real structural damping (gsiructure)- Sometimes,
flutter is described as a phenomenon of energy transfer between modes [2|, which starts
being critical when their two frequencies coalesce. This behaviour is shown in the V-f
diagram (4.2), where the frequency of the second mode approaches the first one until they
are equal for Vgas >~ Vieas| fiuter- It is remarkable to say that a first step in order to avoid
flutter is to separate the frecuencies of the modes that coalesce.

The flutter boundary obtained can be physically regarded as a complete dynamic
interaction between the wing structure and airflow. For any value of speed less than
VEeas| flutter = 65.8", any disturbance of the wing gets damped with exponentially de-
creasing amplitudes. It could be said that air provides the required damping to attenuate
the disturbance. Above the flutter speed, however, the air provides the sufficient negative
damping, and instead of decreasing the oscillatory motion created by the disturbance, the
amplitude starts increasing exponentially.

In some cases, increasing speed after Vias| fiuser Will continuously increase g and the
system will diverge faster. With this wing, if Vg4 is high enough, g decreases and gets into
the stable region again (below the red dashed line). This event happens at Vgag = 85.8.

4.2 Divergence

The V-g curve for the second mode shows a singularity at Vgas = 93.9%, where g goes from
having a big margin of stability to the unstable region. At the same Vgag, its frequency
becomes equal to zero (see 4.2). Therefore this instability is considered to be a static
divergence.






Chapter 5
Joining Wing and Pod with Springs.

Initially, the junction between wing and pod has been considered to be rigid. The previous
results have been obtained with that configuration. In this chapter, the pod has been
joined to the external wing rib by installing springs in the degrees of freedoms of vertical
displacement (along z-axis) and torsion (around y-axis). The rest of degrees of freedom will
be joined in a rigid way. From now on, the value of the stiffness of each spring will be called
k, for the longitudinal one, and ky for the torsional one. Both of them are ideal springs
with natural elongation equal to zero. Figure 5.1 shows the joined grids with springs. Grid
20005 is part of the external wing rib and Grid 20001 belongs to the pod.

Figure 5.1: Wing-Pod Joint

The Bulk Data Entry of Nastran used to model the connections between both modes
are CELAS2 for the degrees of freedom with springs, and MPC for the rigid connections
(see Fig. 5.2).

19
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=L Definition of the rigid
=1z motion of the Pod

Definition of the flexion

| spring

MPC 998 20001 s i P 20005 1
MPC 998 20001 2 A 20005 2
MPC 998 20001 4 As 20005 4 =1
MPC 998 20001 6 1 20005 6 =
|CELASZ 2105 500. 20001 3 20005 5]
|CELA32 2106 500 20001 5 20005 ]

| Definition of the

torsional spring

Figure 5.2: Section of bdf file to model connection with springs

5.1 Effects of spring stiffness on natural frequencies.

In order to illustrate the effect of the springs on the structure, the first four natural fre-

quencies have been calculated for a range of values of k, and ky. Figure 5.3 shows the
frequencies for a given value of ky and a wide range of k,. Figure 5.4 and 5.5 show the
effect of both stiffness on the first and second natural frequency.

60

50 n

Frequency (rad/s)
[ 9] e
= =]

[a~]
=]

Frequency for kg =1E6 Nm/rad

Modo1
Modo2
Modo3
Modod

0 1 1
10° 102 10* 10° 108
k, (N/m)

Figure 5.3: First four modes Frequencies-k, for kg = 10°
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Figure 5.5: Influence of k, and ky on the second mode frequency

Frequencies have horizontal asymptotes for great values of k, and ky. Their asymptotic
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values are the ones obtained in chapter 2, which means that by increasing the stiffness of
the joints, the frequencies approach the values of the rigid joint case (first mode is plunge
and second mode is torsion). For k, > 10°N/m and ky > 10°Nm/rad, the frequencies
have values very close to the ones of the rigid joint configuration.

The lower values obtained correspond to the natural frequencies of the springs, that makes
sense because for very low k values, the frecuency mode is proportional to v/k.

The intermediate values in the plot of second mode (flat part of the plot) correspond to
the frequency of the plunge mode. This is because one stiffness is still very low and the
first mode is approximately the natural frecuency of that spring. However, as it was said,
when both stiffness values are high enough, the frequencies of mode 2 now tend to that of
the torsion mode, and the values of mode 1 tend to the plunge mode.

5.2 Study of pod vibrations.

One of the goals of this analysis report was to find the values for k, and kg so that the
vibration amplitude of the pod would be smaller than the ones obtained at the wing. As
it is shown below, this is not possible, as the vibrations of the pod are always bigger than
those of the wing.

5.2.1 Effects of spring stiffness on the pod vibration amplitude.

The motion of the whole structure is influenced by the values of the stiffness. In the
previous section, the influence on natural frequencies was studied. Now, the focus will be
on the ratio of vibration amplitude between the tip of the wing and the pod. A comparison
between displacements for grids 20001 (pod) and 20005 (tip of the wing) has been made
for the first modes using different stiffness. These results are shown in figures 5.6 and 5.7 .
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First mode vertical displacements response

108

102 k,(Nm/rad)

k,(N/m)

Figure 5.6: Ratio of vertical displacements in plunge mode as a function of k, and kg

Second mode torsional response

105 —_—

.
wing

pod

10° -
10°

102
Kk, (N/m)

10° 10° k,(Nm/rad)

Figure 5.7: Ratio of spins in torsion mode as a function of k, and kg
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Both figures show that the pod motion will be greater in terms of vertical displacement
and spin than the wing motion for any values of k, and ky. The minimum is found when
both k, and ky are extremely high, which means rigid joint. In that case, both ratios are
equal to 1.

Therefore, these springs have no use if the goal is to reduce the vibrations of the pod.
However, they can be used to reduce wing vibrations and improve flutter behaviour as it
will be explained in the next sections.

5.3 Analysis of wing vibrations.

There is plenty of information regarding the theory of dynamics in order to decrease vibra-
tions on any system. One of the most popular approaches is the theory of mass damper,
which could be used to reduce the vibration amplitude under certain conditions.

The wing-pod system can be regarded as one with a mass damper. In this case, the
pod acts as the mass damper while the wing is the system whose vibrations need to be
reduced.

5.3.1 Mass damper.

Structures with small damping as this one, may develop vibrations of big amplitudes for
loads acting at frequencies close to resonance. This response can be reduced by connecting
a mass through a spring and a damper whose values shall be tuned. The original idea of
the tuned mass damper belongs to Frahm [1], who did only include a spring but not a
damper in his mass damper design.

In this section, a mass damper design will be proposed for the model. The pod will be
attached with 2 springs but without dampers, since this is a design requirement. However,
if a damper was introduced, it would be more effective reducing vibrations.

Figure 5.8, shows the configuration for a single degree of freedom problem.
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kl

s
[
H
ot

IS SS

Figure 5.8: Dynamic vibration absorber attached to a single degree of freedom system [3]

In the studied case, the main body (m;) whose vibrations need to be reduced would be
the wing, while the pod would act as the mass damper (ms).

A similar configuration was studied in [3], where the vibration amplitude is obtained as
a function of the mass ratio (u = 2), the natural frequencies (w; = y/ 2L and wyp = /22,
1 mi mo

the damping ratio (£ = 6217“’11) and the external excitation frequency (w).

A typical shape of this function has been obtained for the configuration shown in figure
5.8. The values of the parameters do not match with the ones of the wing and the pod
studied. There is no need for that in order to show the qualitative influence of the mass
damper on the system.
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. Amplification factor
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Figure 5.9: Amplification factor in a system with u = %, Wy = 10% and & = 0.05 for a
range of we and w

The figure shows that properly tuning the stiffness of the spring ko (i.e. its natural
frequency wy), the values of w where the function has a minimum or a maximum can
be changed. The minimum amplification happens when the load acts near the natural
frequency of the mass damper. This system proves to be very effective when the frequencies
of the external loads are known.

Using pod and springs as mass dampers.

If the pod was considered as a combination of two mass dampers, a torsional and a longitu-
dinal one, their resonance frequencies could be easily tuned in order to match the unknown
external load frequency.

The resonance frequency of a longitudinal spring mass damper is f = % ’fn—“, while for

a torsion spring it is f = % kT Where m is its mass and [, its moment of inertia.



5.4. Analysis of the first plunge and torsion modes. Wing and pod motion
decoupling

27
The pod mass and inertia values are mp,q = 328.3kg and I,,q = 161.7kgm?. Conse-
quently, the desired values of stiffness to reduce vibrations would be k, = (27 f )Qmpod and
ko = (27 f)*I0a, with f the frequency of the external load.
flutter-boundary velocity.

This criteria of selecting stiffness values will be applied in section (6.1) to increase the

5.4 Analysis of the first plunge and torsion modes. Wing
and pod motion decoupling

Another criteria to tune the stiffness constants is presented in this subsection.

In order to understand how stiffness will affect the shape of the first modes of plunge and

torsion, a representation of the free-wing (stiffness constants equal to zero) and joined-wing
(rigidly attached to the pod) is shown in Figure 5.10 and Figure 5.11.

(b) Mode 2.
(a) Mode 1. fo=3.04H,
fi = L77H,

Figure 5.10: Free wing modes.
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Figure 5.11:

Rigid-joined wing modes.
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Figure 5.10 shows that plunge and torsion are coupled for the first two modes of the
free-wing. One design requirement could be to uncouple the first two modes of the wing
so that there would be pure plunge for the first one and pure torsion for the second. To
achieve this, their frequencies have to be close to the ones of the rigid joining case, which
involves high values of stiffness.

Furthermore, an additional goal could be to uncouple the motion between wing and
pod. This means that the vertical displacement and pitch of the pod would not be influ-
enced by the plunge and torsion of the wing. This uncoupling condition can be achieved
by maximizing the relative motion between pod and wing. And by recalling the results
obtained in section 5.2.1, this relative motion was increased by setting low values of k, and
ko.

In conclusion, in order to satisfy both of the mentioned requirements a compromise
solution must be achieved. By trying to find intermediate stiffness values, and using the
results from Figure 5.4 and Figure 5.5, a couple of stiffness constants that satisfy the
frequency constraint are k, = 3.75 - 10°N/m and ky = 3.75 - 10°Nm/rad. It was proved
that lower values of stiffness constants provided a first mode of pure plunge, but they
degraded the response of the second mode, so they were discarded. The modal shapes
using the selected stiffness constants are shown in Figure 5.12.

(a) Mode 1.f; = 1.53H,

(b) Mode 2.fy = 2.18H,

Figure 5.12: Natural modes of the wing-pod system

These results show that the rotation motion around the wing axis has been significantly
damped in the first mode, resulting in a quasi-pure plunge mode. Additionally, the vertical
displacement amplitude in the second mode has been reduced in contrast to the free-wing
second mode. Regarding the natural frequencies, they are lower than the ones of the rigid
joined wing (1.16% for first mode and 2.24% for the second one). Finally, the relative
vibration amplitude between the wing’s tip and the pod is :”—"d = 1.0929 in the first

wing
mode and ;:T”: = 1.0913 in the second mode. This pair of stiffness constants provides a

g
compromise solution for the mentioned requirements.

The influence of these results in Vgas|frueer will be discussed in section 6.1.



Chapter 6

Flutter Instability in the Flexible Joint
Configuration

Spring stiffness values alter the response of the wing to flutter instability, as they modify
the natural behaviour of the structure to free vibration as well as its interaction with the
aerodynamic forces.

It is important to recall from the flutter analysis in the rigid joining case that flutter
occurred at Vpag = 65.87 for the first normal mode, while at Vgas = 93.9% the dynamic
divergence appeared for the second one.

Spring stiffness can be tuned in order to increase the flutter-boundary speed. In this
section, the results of two different procedures are shown. The first one, is based on the
concept of mass dumper explained in section 5.3.1; the second one consists in uncoupling
the torsion and flexion of the first two modes of the structure, explained in section 5.4.
Each procedure returns two different values for k, and kg, and a different value of flutter
boundary velocity.

6.1 Increasing flutter speed matching flutter and mass
damper resonance frequency

In section 5.3.1, the use of the pod as a mass damper was explained and it was said that
it was possible to reduce the vibrations of the system by tuning its resonance frequency.
This was very useful when the frequency of the external load acting on the structure was
known. Following this idea, in order to increase the velocity of the flutter boundary, the
resonance frequency of the mass damper should be close to the frequency where flutter
instability is expected to appear.

In the rigid attachment configuration, flutter instability was associated with a frequency

29
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ffiutter = 1.61Hz. The pod has a mass my,q = 328.3kg. Therefore, in order to improve
flutter, its stiffness should be k, = mpoa(27 ff1utter)? = 3.36 - 10*N/m.

The torsional spring can be tuned in the same way. With [,,; = 161kgm?, ko =

Lood (27 f prutter)? = 1.65 - 10 Nm/rad.
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Figure 6.1: V-g Diagram with k, = 3.36 - 10N/m and kg = 1.65 - 10’ Nm/rad
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Figure 6.2: V-f Diagram with k, = 3.3610* - N/m and kg = 1.65 - 10* Nm /rad
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Figure 6.1 and 6.2 show that flutter is no longer associated with the first mode, but
with the second one, at a velocity Vpas = 77.77, that is greater than in the rigid case and
at a frequency fyuper = 2H 2.

By tuning again the mass damper for the new flutter frequency: k, = 5.185 - 101N /m
and kg = 2.542 - 10*Nm/rad.
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Figure 6.3: V-g Diagram with k, = 5.185 - 10*N/m and ky = 2.542 - 10*Nm/rad
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Figure 6.4: V-f Diagram with k, = 5.185 - 10*N/m and ky = 2.542 - 10! Nm/rad
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Flutter velocity has increased again. Now its value is 95.77, almost the same as the
divergence velocity, which is not affected by the spring stiffness. The flutter frequency for
this case is 2.1Hz. Now flutter is associated with the third mode.

The third iteration is the last one, as it returns the same flutter frequency than the
second one (f = 2.1Hz). The stiffness are k, = 5.716-10*N/m and kg = 2.803-10* Nm /rad.
Its diagrams are shown below:
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Figure 6.5: V-g Diagram with k, = 5.716 - 10*N/m and ky = 2.803 - 10*Nm/rad
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Figure 6.6: V-f Diagram with k, = 5.716 - 10*N/m and ks = 2.803 - 10* Nm/rad

Flutter boundary appears at mode 3, at a velocity Vpas = 1037

This procedure to tune springs has shown good results to increase flutter velocity. The
values of k, and ks obtained are not the optimal ones for increasing it, as the relation
between modes, frequencies and aerodynamic loading is complex and a more extended
analysis would be necessary to find them. However they will be used as initial points for
a sensitivity analysis of flutter-speed boundary.

As a general rule, the improvement the flutter is associated to the separation in fre-
cuency of the modes that exchange energy between them, as it can be seen in the previous
graphs.

6.1.1 Frequency analysis

A frequency analysis has been carried out for the rigid joint configuration and for the
wing with the values of stiffness obtained at the end of section 6.1 (k, = 5.716 - 10*N/m
and kg = 2.803 - 10! Nm/rad). The results obtained are the displacement of the external
wing rib (grid 20005) when a load of frequency f is applied on that same node. SOL 111
of Nastran has been used for this purpose. Figure 6.7 shows how different the dynamic
behaviour of both configurations is.
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Figure 6.7: Relation between vertical displacement and frequency for the vertical load
applied.

6.2 Influence of decoupling modes on flutter phenomena

In section 5.4, a pair of spring stiffness values were obtained following a criteria of de-
coupling torsional and plunge modes. In this section, it will be shown how the results
of applying the PKNL method in Nastran with those stiffness (k, = 3.75 - 105% and
Ky = 3.75-10°22) will have an influence on flutter phenomenon.

The Figure 6.8 showing the damping coefficient confirms a static divergence at the same
point where the rigid-joined model also diverges, while flutter disappears completely.

Furthermore, it can be seen in Figures 6.8 and 6.9 how the second mode (red curve) tries
to get into flutter by extracting energy from the first (blue curve) and third mode (yellow
curve), which slowly decreases its damping and frequency. In the end, the frequencies of
both modes 2 and 3 get to be separated from each other, which means that mode 2 does
not get to extract the sufficient energy from mode 3 to get over the 3% damping line.

As a conclusion, it can be noticed that both springs not only manage to uncouple the
normal modes but they also increase the flutter speed to an undefined limit.
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Influence of decoupling modes on flutter phenomena

35

Damping g

Mode &
1.2F — — —g=003] |
_14 i i i i i

50 100 150 200 250

EAS Velocity [

=

Figure 6.8: V-g diagram with the implemented springs

14 ; ; ; . .
Mode 1
Made 2

12r Made 3 | |
Made 4
Made 5

wor Mode 6 | |

Frequency [I7.

50 100 150 200 250

EAS Velocity [™ |

=

Figure 6.9: V-f diagram with the implemented springs



36 Chapter 6. Flutter Instability in the Flexible Joint Configuration

6.3 Chosen spring stiffness values

In the previous sections 6.1 and 6.2, stability boundaries for two different pairs of spring
stiffness were studied. The pair obtained in section 6.1 increases flutter velocity by 56%,
which is a significant improvement in terms of stability. The other pair, obtained in
5.4, has shown an even better improvement, as flutter does not occur for the studied
flight conditions. Therefore, these last ones will be chosen as the final values for the
flexible joint that will satisfy the mentioned design requirements (k, = 3.75 - 10°N/m and
ke = 3.75 - 10°Nm/rad).



Chapter 7
Sensitivity Analysis

It has been proved from section 6.2 that there were values of k, and ks for which not only
could the first normal modes of the wing be uncoupled but they also managed to avoid
flutter at M = 0.8.

However, if these stiffness values were to be used as the central points within a range
of k, and ky to find how flutter velocities vary in a sensitivity analysis, the latter could not
be performed since flutter does not appear as mentioned above.

Indeed, for this sensitivity analysis, the pair of k, and ks that have been used are the
ones obtained in section 6.1, in which the concept of mass damper was used in order to
find stiffness values that would progressively increase the flutter-boundary velocity. These
values are: k, = 5.716 - 104% and kg = 2.80317};—7&Z

The analysis was set up to express flutter speed as a function of the torsion spring
constant, kg, in which k, remained as variable parameter. By running several simulations
the results obtained are shown in figure 7.1.

Notice how flutter speed always grows with both spring constants in the range selected.
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Figure 7.1: Evolution of flutter-boundary speed as a function of k,, for different constant
values of kg

Increasing stiffness along the gradient direction might result in obtaining an optimal
pair of values. There is no need to do that, as a pair of stiffness values that avoid flutter
has already been obtained. Nevertheless, this figure shows valuable information, as for
example, how sensitive flutter velocity Up gas is to changes in stiffness.

However, the behaviour of the system is not monotonous as it can be expected with
figure 7.1. When high enough values are reached, the flutter velocity decreases again. This
fact is proved because when both k tend to infinite (rigid case), the flutter velocity tends
to 65.8m/s.
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Concluding Remarks

The present work has accomplished all its objectives. Firstly, the structure has been
characterized by its first 16 normal modes (the ones with a frecuency below 50Hz). In
addition, its generalized mass and stiffness matrices have been calculated.

After describing the flutter equation for the K-Method, a flutter analysis with Nastran
has been carried out, using the PK method. As a result, the instability boundaries of the
wing (flutter and divergence) have been obtained. There was a big difference between the
flutter-boundary velocity and divergence velocity. The range of operation is limited by the
lowest of these two (flutter in this case).

The suggested structural alteration of the wing, which consisted in changing the rigid
joint between wing and pod into a flexible one, was successfully implemented in the model.
The stiffness values of the springs used in the flexible union were used as design variables
in order to reduce wing vibrations.

An initial requirement of design was to reduce pod vibrations related to those of the
wing. However, this report proved that it was not possible. The configuration under which
they are minimum is the rigid case.

Nevertheless, wing vibrations could be reduced by properly tuning the spring stiffness
based on the mass damper concept. By doing so, flutter-instability velocity could be
increased.

A second requirement was to uncouple motion between wing and pod, which has also
been achieved.

All together, two different approaches were made in order to correctly set the spring
stiffness. Both have shown very good results; the first one increased flutter velocity by
56%, while the other makes flutter to disappear.

Hence, the modified wing range of operation is no longer limited by flutter, as the most
restrictive speed is the one for which divergence appears, on which flexible joining has
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no effect. If the design goal was to increase this range, the divergence speed should be
increased.

A way to do this without altering the structure, is by choosing a material with an
higher Young’s module. The ultimate configuration will be able to fly at higher speeds and
lower altitudes than the initial one. These changes could make the wing more valuable to
potential customers as it could be used in a more extended flight envelope, turning it into
a more versatile wing.
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Chapter 9

Appendix

9.1

Bdf file for flutter analysis of rigid joint configura-

tion

SOL 145 - flutter Analysis

File Management Section
ASSIGN OUTPUT4 = 'btb.f50',UNIT = 50, FORM=FORMATTED

Executive Control Deck

10 ID MSC.NASTRAN FLUTTER ANALYSIS
SOL 145 <— [Flutter Solution
12 TIME 5000
S
1 S mmmm - Executive Control Deck  —=————————mmmm——mmm—
5 S
6 CEND
1 E
8 $ Case Control Deck  —————————————————————————————
19 s
20 TITLE = FLUTTER ANALYSIS
21 SUBTITLE (SOL145)
22§
23 ECHO = NONE
24  SEALL = ALL
e DS/HEEHOD _ ggg < [Real Eigenvalue Method Selection |
2 FMETHOD = 300 <— [Flutter Analysis Method Selection |
28  RESVEC = NO
29  DISPLACEMENT = ALL
30 s
31 S...looolec 200000003 | 4 .5.. 6 7 .8. 9 [..10
32 PARAM POS 0
33 PARAM  GRDPNT 0
34 PARAM OPPHIPA 1
35  PARAM  PRTMAXIM YES
36 PARAM  OPPHIB 1
o
38 BEGIN BULK
39 $ MATERIAL QUE USA PARA LAS BARRAS (PROD) Y PARA LAS CHAPAS O REVESTIMIENTO (PSHELL)
40 1T I OO~ A (SRONC I AR SO o SR PO - S NN AU I < ISt PR - I R I O D
41 MAT1 1 7.171+102.689+10 5.1538-4
42 s
43 $ GRIDS DEL LA LINEA MORADA DE LA RAIZ DEL ALA:POD
44 GRID 20001 0.6096 6.2484 0. 123456
45 GRID 20002 0.0762 6.2484 0.
46 GRID 20003 -0.9144 6.2484 0.
47 GRID 20004 2.1336 6.2484 0.
48 $ CREO LAS LINEAS MORADAS: BARRAS RIGIDAS
49 RBAR 3001 20001 20002 123456
50 RBAR 3002 20002 20003 123456
51 RBAR 3003 20001 20004 123456
E

SN

55 $ GRIDS QUE FORMAN EL ALA, A PARTIR DE LOS CUALES SE DEFINEN LOS CROD Y CQUAD4
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289 SPC 999 10705 5
290 SPC 999 10705 6
291 SPC 999 10800 4
292 SPC 999 10800 5
293 SPC 999 10800 6
294 SPC 999 10801 4
SPC 999 10801 5
SPC 999 10801 6
SPC 999 10802 4
SPC 999 10802 5
SPC 999 10802 6
SPC 999 10803 4
SPC 999 10803 5
SPC 999 10803 6
SPC 999 10804 4
SPC 999 10804 5
SPC 999 10804 6
SPC 999 10805 4
SPC 999 10805 5
SPC 999 10805 6
SPC 999 10900 4
SPC 999 10900 5
SPC 999 10900 6
SPC 999 10901 4
SPC 999 10901 5
SPC 999 10901 6
SPC 999 10902 4
SPC 999 10902 5
SPC 999 10902 6
SPC 999 10903 4
SPC 999 10903 5
SPC 999 10903 6
SPC 999 10904 4
SPC 999 10904 5
SPC 999 10904 6
SPC 999 10905 4
SPC 999 10905 5
SPC 999 10905 6
SPC 999 11000 4
SPC 999 11000 5
SPC 999 11000 6
SPC 999 11001 4
SPC 999 11001 5
SPC 999 11001 6
SPC 999 11002 4
SPC 999 11002 5
SPC 999 11002 6
SPC 999 11003 4
SPC 999 11003 5
SPC 999 11003 6
SPC 999 11004 4
SPC 999 11004 5
SPC 999 11004 6
SPC 999 11005 4
SPC 999 11005 5
SPC 999 11005 6
1 O e O T T A O T I T I N O
RBE3 2100 20001 123456 1.0 12 11000 11001 +6001

+6001 11002 11003 11004 11005

S 1 | 2 | I R S I 6 7 8 9 [..10
PROD 5 1 2.5000-5

$

CROD 100 5 10003 10000

CROD 101 5 10004 10001

CROD 102 5 10005 10002

CROD 103 5 10103 10100

CROD 104 5 10104 10101

CROD 105 5 10105 10102

CROD 106 5 10203 10200
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10201
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10300
10301
10302
10400
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10402
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10501
10502
10600
10601
10602
10700
10701
10702
10800
10801
10802
10900
10901
10902
11000
11001
11002

10001
10002
10004
10005
10101
10102
10104
10105
10201
10202
10204
10205
10301
10302
10304
10305
10401
10402
10404
10405
10501
10502
10504
10505
10601
10602
10604
10605
10701
10702
10704
10705
10801
10802
10804
10805
10901
10902
10904
10904
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11002

.10...



48

Chapter 9. Appendix

488
489
490
491
492
493
494
495
496

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
2217
228
229
230
231
232
233
234
235
236

B e B B e I e e e e B e B I B e I e e e S B B e e I B B B e e e e e Y|

00 0O 0O O CO 0O 0O CO CO CO QO 0 CO QO GO QO Q0 CO QO QO

11003
11004

10000
10003
10100
10103
10200
10203
10300
10303
10400
10403
10500
10503
10600
10603
10700
10703
10800
10803
10900
10903
10002
10005
10102
10105
10202
10205
10302
10305
10402
10405
10502
10505
10602
10605
10702
10705
10802
10805
10902
10905

.o 4

1.5000-2
10001
10004
10101
10104
10201
10204
10301
10304
10401
10404
10501
10504
10601
10604
10701
10704
10801
10804
10901
10904

11004
11005

w

10100
10103
10200
10203
10300
10303
10400
10403
10500
10503
10600
10603
10700
10703
10800
10803
10900
10903
11000
11003
10102
10105
10202
10205
10302
10305
10402
10405
10502
10505
10602
10605
10702
10705
10802
10805
10902
10905
11002
11005

5.,

10101
10104
10201
10204
10301
10304
10401
10404
10501
10504
10601
10604
10701
10704
10801
10804
10901
10904
11001
11004

9 [..10
9 [..10
9 [..10
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PSHELL
E
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
K
$...1

$

CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
$

PSHELL
$
CQUAD4

PSHELL

S...1...

1

O ~Jo U WN

61

1

I e T e e = S e e e e e e e e e T T T e N = S S U S S S S e

= .

NN NDNDNDNDMNDNDNDNDNDMNDNDNDNDNDND

.0025000

10000
10001
10100
10101
10200
10201
10300
10301
10400
10401
10500
10501
10600
10601
10700
10701
10800
10801
10900
10901
10003
10004
10103
10104
10203
10204
10303
10304
10403
10404
10503
10504
10603
10604
10703
10704
10803
10804
10903
10904

3] 4

1.0000-4
10003
10103
10203
10300
10400
10500
10600
10700
10800
10900
10002
10102
10202
10302
10402
10502
10602
10702
10802
10902

3. 4

.017500

10004

$ DEFINE EL ESPESOR DE LA CHAPA 0.0025

10001
10002
10101
10102
10201
10202
10301
10302
10401
10402
10501
10502
10601
10602
10701
10702
10801
10802
10901
10902
10004
10005
10104
10105
10204
10205
10304
10305
10404
10405
10504
10505
10604
10605
10704
10705
10804
10805
10904
10905

[...5...

10000
10100
10200
10400
10500
10600
10700
10800
10900
11000
10102
10202
10302
10402
10502
10602
10702
10802
10902
11002

[...5...

10001

10101
10102
10201
10202
10301
10302
10401
10402
10501
10502
10601
10602
10701
10702
10801
10802
10901
10902
11001
11002
10104
10105
10204
10205
10304
10305
10404
10405
10504
10505
10604
10605
10704
10705
10804
10805
10904
10905
11004
11005

10100
10200
10300
10403
10503
10603
10703
10803
10903
11003
10105
10205
10305
10405
10505
10605
10705
10805
10905
11005

10101

10100
10101
10200
10201
10300
10301
10400
10401
10500
10501
10600
10601
10700
10701
10800
10801
10900
10901
11000
11001
10103
10104
10203
10204
10303
10304
10403
10404
10503
10504
10603
10604
10703
10704
10803
10804
10903
10904
11003
11004

10103
10203
10303
10303
10403
10503
10603
10703
10803
10903
10005
10105
10205
10305
10405
10505
10605
10705
10805
10905

10104

L10...

.10...
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CQUAD4 62 3 10104 10101 10201 10204

CQUAD4 63 3 10204 10201 10301 10304

CQUAD4 64 3 10304 10301 10401 10404

CQUAD4 65 3 10404 10401 10501 10504

CQUAD4 66 3 10504 10501 10601 10604
2 CQUAD4 67 3 10604 10601 10701 10704
3 CQUAD4 68 3 10704 10701 10801 10804
4 CQUAD4 69 3 10804 10801 10901 10904
5 CQUAD4 70 3 10904 10901 11001 11004
6 $
7 5 e L e A O R 2 e N0
8 PSHELL 4 1 .017500

$

CQUAD4 71
CQUAD4 72
CQUAD4 73
CQUAD4 74
CQUAD4 75
CQUAD4 76
CcQUAD4 77
CQUAD4 78
CQUAD4 79
CQUAD4 80
CQUAD4 81
CQUAD4 82
CQUAD4 83
CQUAD4 84
CQUAD4 85
CQUAD4 86
CQUAD4 87
CQUAD4 88
CQUAD4 89
CQUAD4 90
cQuaD4 91
CQUAD4 92

10003 10000 10001 10004
10004 10001 10002 10005
10103 10100 10101 10104
10104 10101 10102 10105
10203 10200 10201 10204
10204 10201 10202 10205
10303 10300 10301 10304
10304 10301 10302 10305
10403 10400 10401 10404
10404 10401 10402 10405
10503 10500 10501 10504
10504 10501 10502 10505
10603 10600 10601 10604
10604 10601 10602 10605
10703 10700 10701 10704
10704 10701 10702 10705
10803 10800 10801 10804
10804 10801 10802 10805
10903 10900 10901 10904
10904 10901 10902 10905
11003 11000 11001 11004
11004 11001 11002 11005

T T T e e T N NS

$
1 O e T T A O« T I DT I N O s
615 $ MASAS PUNTUALES DEL BORDE DE ATAQUE DEL ALA
616 CONM2 1000 10000 14.33851
61 CONM2 1001 10003 14.33851
618 CONM2 1002 10100 28.67702
619 CONM2 1003 10103 28.67702
620 CONM2 1004 10200 28.67702
621 CONM2 1005 10203 28.67702
622 CONM2 1006 10300 28.67702
623 CONM2 1007 10303 28.67702
624 CONM2 1008 10400 28.67702
625 CONM2 1009 10403 28.67702
626 CONM2 1010 10500 28.67702
627 CONM2 1011 10503 28.67702
628 CONM2 1012 10600 28.67702
629 CONM2 1013 10603 28.67702
630 CONM2 1014 10700 28.67702
631 CONM2 1015 10703 28.67702
632 CONM2 1016 10800 28.67702
633 CONM2 1017 10803 28.67702
6 CONM2 1018 10900 28.67702
6 CONM2 1019 10903 28.67702
[¢ CONM2 1020 11000 14.33851
€ CONM2 1021 11003 14.33851
$ MASAS PUNTUALES DEL EJE MEDIO DEL ALA
CONM2 1100 10001 28.78064
CONM2 1101 10004 28.78064
CONM2 1102 10101 57.56127
CONM2 1103 10104 57.56127
CONM2 1104 10201 57.56127
CONM2 1105 10204 57.56127
CONM2 1106 10301 57.56127
CONM2 1107 10304 57.56127
CONM2 1108 10401 57.56127

CONM2 1109 10404 57.56127
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718
/19

720

CONM2 1110 10501
CONM2 1111 10504
CONM2 1112 10601
CONM2 1113 10604
CONM2 1114 10701
CONM2 1115 10704
CONM2 1116 10801
CONM2 1117 10804
CONM2 1118 10901
CONM2 1119 10904
CONM2 1120 11001
CONM2 1121 11004

.56127
.56127
.56127
.56127
.56127
.56127
.56127
.56127
.56127
.56127
.78064
.78064

$ MASAS PUNTUALES DEL BORDE DE SALIDA DEL ALA

.9

CONM2 1200 10002 38.96426

CONM2 1201 10005 38.96426

CONM2 1202 10102 77.92852

CONM2 1203 10105 77.92852

CONM2 1204 10202 77.92852

CONM2 1205 10205 77.92852

CONM2 1206 10302 77.92852

CONM2 1207 10305 77.92852

CONM2 1208 10402 77.92852

CONM2 1209 10405 77.92852

CONM2 1210 10502 77.92852

CONM2 1211 10505 77.92852

CONM2 1212 10602 77.92852

CONM2 1213 10605 77.92852

CONM2 1214 10702 77.92852

CONM2 1215 10705 77.92852

CONM2 1216 10802 77.92852

CONM2 1217 10805 77.92852

CONM2 1218 10902 77.92852

CONM2 1219 10905 77.92852

CONM2 1220 11002 38.96426

CONM2 1221 11005 38.96426

Sl 2l 3 B BT

CONM2 1300 20002 -1 328.33360.0762 6.2484 0.0

+1301 0.0 68.25133 0.0

[ R [~/ [ S R S I T | G

[Aerodynamic Panel for Doublet-Lattice Theory |

CAERO1 101001 100000 101 151 1

+ [-0.6404 0. 0.0 2.5 -0.6404 6.096 0.0 2.5 ]
Geometry Definition

[ R [~/ R S A S I T | BT I . o

PAEROL 100000

o N (O I | NI e o

[List of Span Division Points |

AEFACT 101 0. 0.05 0.1 0.15 0.2 0.25 0.3

+ 0.35 0.4 0.45 0.5 0.54 0.58 0.62 0.66

+ 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84

+ 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

Soouloeile 2000 ea 30t P e A N T e R

[List of Chord Division Points |

AEFACT 151 0 0.02 0.04 0.06 0.08 0.1 0.12

+ 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

+ 0.3 0.32 0.34 0.36 0.38 0.4 0.45 0.5

+ 0.54 0.58 0.62 0.66 0.7 0.72 0.74 0.76

+ 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92

+ 0.94 0.96 0.98 1.0

S...1oau)..02 [C | 4...01...5. | T I . R

Surface Spline for Interpolating Forces

SPLINE1 150000 101001 101001 102260 111111

L10...

.10...

.10...

.10...

.10...

P
+1301
.
+
.
Sl
+
+
+
Sl
+
+
+
+
+
.

.10...
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SET1 111111 10000 10001 10002 10100 10101 10102 10200 +
+ 10201 10202 10300 10301 10302 10400 10401 10402 +
+ 10500 10501 10502 10600 10601 10602 10700 10701 +
+ 10702 10800 10801 10802 10900 10901 10902 11000 +
+ 11001 11002
List of structural grid points for the spline
$
$ Modal Analysis
$
[ AP (RO~ BN [PRRRIC IR PO AU VPR SRR [PPRRE R IO AP (ORI - SOOI [PRRRL IR I 0 BN
[Real Eigenvalue Extraction Method: Lanczos |
EIGRL 200 0.0 50.
S Frequency range of interest Normalize to unit value of the generalized mass
S O LIPSt Do IOy SO PP - JUPRRN [PRPRURY - SRR IO AV (PP : IR IPUPRIL IR IR ¢ IS
$ VELOCITY REFC RHOREF| SIMXZ
AERO 100. 2.5 1.0 +1 0

Basic parameters for unsteady aerodynamics

s
i...l... D L I o o P T PSSt - TR Iy VSRR I IR PSRN I I I O B
Flutter Data METHOD | |DENS MACH VEL IMETH Number of modes
FLUTTER 300 PKNL 100 200 300 6
PKMethod  pointers to FLFACTs
No Looping
S lecil e 20 30 Ao e 5 e b e T e 8 90 ] 100

[Mach Number - Frequency Table for Aerodynamic Matrix Calculation]

MKAERO1 0.8 +

+ 0.001 0.005 0.01 0.02 0.03 0.04 0.05 0.06 +
MKAERO1 0.8 +

+ 0.07 0.08 0.1 0.2 0.3 0.5 0.75 1.

S MACH

S O . R O I | 6 | 7 [...8...1 9 [..10

1 [Mach Numbers for Flutter Analysis|

-
S
w N

¢ FLFACT 200 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
/6 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
764 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
765 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
766 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
767 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
168 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
769 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
/70 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
771 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
772 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
773 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
774 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
775 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
176 + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +

/ + 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +

+ 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
+ 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
+ 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
+ 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 +
+ 0.800 0.800
$ DENSITY
[Density Ratios for Flutter Analysis |
FLFACT 100 0.0132 0.0136 0.0141 0.0145 0.0150 0.0154 0.0159 +
+ 0.0164 0.0169 0.0175 0.0180 0.0186 0.0192 0.0198 0.0204 +

788 + 0.0210 0.0217 0.0224 0.0231 0.0238 0.0246 0.0254 0.0262 +

789 + 0.0270 0.0279 0.0288 0.0297 0.0306 0.0316 0.0326 0.0337 +
790 + 0.0348 0.0359 0.0370 0.0382 0.0395 0.0407 0.0420 0.0434 +
791 + 0.0448 0.0463 0.0478 0.0493 0.0509 0.0526 0.0543 0.0560 +
792 + 0.0579 0.0597 0.0617 0.0637 0.0658 0.0679 0.0702 0.0725 +
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3
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+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 0
+ 1
+ 1
3

SVELOCITY

.0748
.0968
L1246
.1603
.2063
.2655
L3417
L4232
.5131
.6170
L7363
.8724
.0270
L2017

.0773
.0999
.1286
.1655
L2129
2740
.3526
L4337
.5253
L6311
7523
.8907
L0477
.2250

HEPOOOOOOOOOOoOOoOo

.0798
.1031
L1327
.1708
L2197
.2828
.3639
L4445
.5378
. 6453
.7686
.9092
.0687

HOOOOODOOOOOoOOoOo

[Velocities for Flutter Analysis

FLFACT 300
241.80
240.95
240.09
239.23
238.37
237.51
236.64
236.09
236.09
236.09
236.09

236.09
240.31
245.81
251.19
256.46
261.63
266.69
271.66

NDDATA

+
+
+
+
+
+
+
+
+
+
+
+ 236.09
+
+
+
+
+
+
+
+
S
E

242.54
241.69
240.84
239.98
239.12
238.26
237.40
236.53
236.09
236.09
236.09
236.09
236.09
236.09
241.00
246.49
251.86
257.11
262.27
267.32
272.28

242.44
241.59
240.73
239.88
239.02
238.15
237.29
236.42
236.09
236.09
236.09
236.09
236.09
236.09
241.69
247.17
252.52
257.76
262.90
267.94

.0825
.1064
.1369
L1762
.2268
.2918
.3735
L4554
.5504
.6599
.7852
.9281
.0900

HOOOOODOOOOOoOOoOo

242.33
241.48
240.63
239.77
238.91
238.05
237.18
236.31

236.09
236.09
236.09
236.09
236.80
242.38
247.84
253.18
258.41
263.54
268.57

.0852
.1098
L1413
.1819
.2340
.3012
.3830
. 4665
.5633
.6746
.8021
.9473
L1117

E=NeleNoNoNoNoNoNoNoNolNo)

242.22
241.37
240.52
239.66
238.80
237.94
237.07
236.20

236.09
236.09
236.09
236.09
237.51
243.07
248.52
253.84
259.06
264.17
269.19

.0880
L1133
.1458
L1877
L2415
.3108
.3928
L4779
.5763
. 6897
.8193
.9667
L1337

EeNeNoNeoNeoNoNoNoNoNoNoNe)

242.12
241.27
240.41
239.55
238.69
237.83
236.96
236.09

236.09
236.09
236.09
236.09
238.21
243.76
249.19
254.50
259.70
264.80
269.81

.0909
L1170
.1505
.1937
L2493
3208
L4027
.4894
.5897
. 7049
.8367
. 9865
.1560

HOOOOOOOOOoOOoOoOo

242.01
241.16
240.31
239.45
238.59
237.72
236.85
236.09
236.09
236.09
236.09
236.09
236.09
238.91
244 .44
249.86
255.16
260.35
265.44
270.43

.0938
.1207
.1553
.1999
.2573
L3311
L4129
.5012
.6032
L7205
.8544
.0066
.1787

HEP OOOOOOOOOoOoOOo

241.91
241.05
240.20
239.34
238.48
237.61
236.75
236.09
236.09
236.09
236.09
236.09
236.09
239.61
245.13
250.53
255.81
260.99
266.07
271.05

B I T S S A

T T T T T A A
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9.2 Aerodynamic mesh for flutter analysis

In order to carry out the flutter analysis of the wing, the Doublet-Lattice Method is used
to calculate the aerodynamic unsteady forces. This method requires the wing to be divided
into panel elements. The aerodynamic mesh of the model is show in Figure 9.1. The mesh
has 10 sections along the chord following a cosinus distribution law and sixteen sections
along the span following an exponential distribution law.

Aerodynamic Mesh

Figure 9.1: Aerodynamic Mesh.
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9.3 Matlab-Nastran Interface

9.3.1 Description

An interface has been developed along this project in order to link Matlab and Nastran.
This interface allows users to do a modal parametric analysis and a flutter parametric
analysis in a user-friendly environment. Matlab is the software in charge of the parametric
analysis and Nastran is in charge of the structural-dynamics and aeroelastic simulations.

The interface has been programmed using Matlab and it has the following functions:

1. Create .bdf input file for a SOL103 analysis in Nastran of the wing box model for
different values of k, and ky.

2. Create .bdf input file for a SOL145 analysis in Nastran of the wing box model for
different values of k, and kg, aerodynamic mesh and flight conditions(My,h).

3. Execute Nastran by loading a .bdf input file.

4. Read .f06 results file from a SOL103 analysis in Nastran and get natural frequencies
and displacements of desired nodes of the model.

5. Read .f06 results file from a SOL145 analysis in Nastran, plot V-g and V-f diagrams,
get the static divergence speed and get the flutter speed of the model.

9.3.2 Interface Schematic

The interface can be described by the following schematic:

INTERFACE

Analysis Parameters - ISA Atmosphere
- V-g plotter

- V-f plotter -
- Frequencies plotter

Results Plots - Displacement plotter 33
- Sensitivity Analysis

Execute_Nastran.m 1
,,,,,,,,,,,,,,,,,,,,, >

1
1
. . 1
- Aerodynamic Meshing | bdf creatorm
1
r i
f06_reader m 1
1
1

Figure 9.2: Interface Functional Schematic
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9.4 Matlab code used to obtain modal response analysis
for a range of k£, and ky

function calculate dynamic response Main

k f = logspace(0,7,60);
k th=logspace (0,7,60);

frec_all modes = zeros(4,length(k f), length(k th));

v20001 allmodes = zeros (4,length(k f),length(k th)); %Vertical
displacements node 2001

v20005 allmodes = zeros (4,length(k f),length(k th)); %Vertical
displacements node 2005

th20001 allmodes = zeros (4,length(k f), length(k th)); %Twist node

20001
th20005 _allmodes = zeros (4,length (k_f) length(k_th)); %Twist node
20005

)

ratio_ v_model = zeros(length(k f),length(k th))

ratio v.mode2 = zeros(length(k f) length(k th));
ratio_th_ model = zeros(length(k_f),length(k_th));
ratio th mode2 = zeros(length(k f) length(k th))

?

for j=1:length(k_th)
for i=1:length (k_f)

%Change the value of stiffnesses k f and k th in the bdf
file

change bdf(k f(i),k th(j));

Y%Run Nastran with the new bdf file

run_Nastran

%Read f06 file to obtain modes frequencies and
eigenvector values

%in node 20001(pod) and node 20005 (wing)

[frec ,u20001,u20005| = f06 reader(’
modos propios muelles sinPunch editado.f06");

frec_all modes(:,i,j) = frec;

v20001 allmodes (:,i,j) = u20001(:,1)

v20005 allmodes (:,i,j) = u20005(:,1)

th20001 allmodes (:,i,j) = u20001(:,2

th20005 allmodes (:,i,j) = u20005(:,2

?

)
) :

Y

end
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end

v_20001_model = zeros(length(k_f), length(k_th));

v_20001 model (:,:) = v20001 allmodes (1,:,:);

v_20005_model = zeros(length(k f),length(k th));

v_20005_ model (:,:) = v20005 allmodes (1,:,:);

frec_model (:,:) = zeros(length(k_f),length(k_th));

frec_model (:,:) = frec_all modes(1,:,:);

frec_mode2 (:,:) = zeros(length(k f),length(k th));

frec_mode2 (:,:) = frec_all modes(2,:,:);

ratio_v_model (:,:) = v20001 allmodes(1,:,:)./v20005 allmodes
(1,:,:);

ratio_ v_mode2 (:,:) = v20001 allmodes(2,:,:)./v20005 allmodes
(2,:,1);

ratio_th model (:,:) = th20001 allmodes(1,:,:)./th20005_ allmodes
(1,:,0)5

ratio th mode2 (:,:) = th20001 allmodes(2,:,:)./th20005 allmodes
(2,:,:);

H)
H)
)
)

figure

mesh(k f k th,ratio v _model),

set (gea, 'XScale’ | "log’);

set (geca, 'YScale’ "log’);

set (geca, 'ZScale’ "log’);

title ('First mode vertical displacements response’)

xlabel ('k {\theta}(Nm/rad)’), ylabel(’'k v(N/m)’), zlabel (v {pod},

v_{wing} ),

figure

mesh (k_f,k th ,ratio th mode2),

set (geca, 'XScale’, "log7);

set (gea, 'YScale’ "log’);

set (geca, 'ZScale’"log’);

title (’Second mode torsional response’)

xlabel ( 'k {\theta}(Nm/rad)’), ylabel(’'k v(N/m)’), 6 zlabel( '\ theta {
pod}/\theta {wing}’),

figure
mesh (k_f,k th,frec _model)
set (gea, 'XScale’, "log’);
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set (gea, 'YScale’ "log’);
title (’First mode frequency’)
xlabel ('k {\theta}(Nm/rad)’), ylabel( 'k v(N/m)’

), zlabel(’First
mode frequency $\displaystyle(\ fldC{ldd}{ s,

"interpreter ',

Y

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

latex ’),

figure

mesh (k_f k th,frec _mode2)

set (gea,
set (gca,

"XScale’,’log ) ;
"YScale’
title (’Second mode frequency’

,log ") ;

xlabel ('k {\theta}(Nm/rad)’), ylabel(’k v(N/m)"), zlabel(’Second
mode frequency $\displaystyle(\ fldc{rdd}{ })$7, interpreter’,
latex ’),

end

function change bdf(k f,k th) %Changes value of stiffnesses k f

and k th in the bdf file

fileID

fclose (filelD);

fileID

B=fscanf (fileID ,

fclose (fileID);

fileID

= fopen( 'modos
k£ string-num2str(k T, %28 )

7%(37);

__propios

muelles

k th string=num2str(k th, %.2E");

= fopen(’modos propios muelles sinPunch partel.bdf’
A=fscanf (filelD |,

= fopen(’modos propios muelles sinPunch parte2.bdf’,

/%Cj),

sinPunch editado.bdf’, 'w

)

r’);

DE

s fl=[’CELAS2 2105 "k _f string, 20005 3 20001 3
|

s _tor=[ CELAS2 2106 ,k _th_ string, 720005 5 20001 5)

7];

fprintf (fileID , %s ' n’" A);

fprintf (fileID , %s'\n’,s fl);

fprintf (fileID , "%s'\n’ s tor);

fprintf (fileID , %s'\n’ ,B);

fclose (filelD);

end

?

function run_Nastran
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%Delete previous Nastran results

file and order

Ymew analysis with the new bdf file

delete (’C:\ Users\ Alfonso\Documents\universidad '\ master\2

nastran to run a

_Cuatrimestre\ Aeroelasticidad Avanzada\Trabajo\Apartado4\
modos propios muelles sinPunch editado.f04");

delete (’C:\ Users\ Alfonso\Documents\universidad\ master\2

_Cuatrimestre\ Aeroelasticidad Avanzada'\Trabajo\ Apartado4\

modos propios muelles sinPunch editado.f06);

delete (’C:\ Users\ Alfonso\Documents\ universidad\master 2

7Cuatr1mestre \Aeroelastlmdad Avanzada’ \Trabat]o \Apartadoél\
modos propios muelles sinPunch editado.log’);
%Run Nastran
= system ( 'C:\MSC. Software

status

MSC_ Nastran

and Patran

nastranw .exe modos propios
%Gives time to nastran to generate the result files
pause (6)

end

function |[frec ,u20001,u20005 |

A = fileread (filename);

u20005_index = strfind (A, 720005

u20001 index = strfind (A, 20001

u20005_ matrix = zeros (4,6);
u20001 matrix = zeros (4,6);
for i=1:4

u20005 _matrix (i

u20001 matrix (i

end

frequency _

,0)
120005 1ndex( i)+

1)

)

u20001 1ndex(1 +

(1)+10+121%4)));

frec
u20001

u20005 =

end

= frec_matrix (:,4);

= 120001 _matrix (:
u20005_matrix (:

05)) ;
05)) ;

7[375]);
7[375]);

~ f06

Student Editions
muelles

20190\ Nastran\bin\

sinPunch editado.bdf’);

reader (filename)

G
G

)
DE

= str2num (A(u20001

index = strfind (A, 'STIFFNESS");
frec_matrix = str2num (A((frequency index(1)+10):(frequency

= str2num (A(u20005_index(i)+17:

index (1) +17:

index
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