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Chapter 1

Introduction

Structural Dynamics is a field of major importance in the design of every engineering
system to deeply understand its behaviour subjected to dynamic loading. And when it
comes to the concept design of aerospace structures, studying how these dynamic forces
will influence the performance of the vehicle is of great interest as well.

Deeply related to the latter is the second engineering field that must be address dur-
ing the early stages of aircraft design, and that is Aeroelasticity. Aeroelastic phenomena
can have a significant influence on the design of flight vehicles. Indeed, these effects can
greatly alter the design requirements that are specified for the disciplines of performance,
structural loads, flight stability and control, and even propulsion. In addition, aeroelas-
tic phenomena can introduce catastrophic instabilities of the structure that are unique to
aeroelastic interactions and can limit the flight envelope.

The interaction between a lifting surface and the fluid field can eventually lead under
certain conditions to the so-called Flutter phenomenon. Flutter is a dynamic instability,
and it can be regarded as a response to a harmonic auto-excited problem with divergent
oscillations in which aerodynamic forces couple with the normal modes of the structure,
as a result of the interaction of elastic, inertial and aerodynamic forces.

In this document a thorough analysis of flutter will be presented, applied on a wing box
which has been discretized using a FEM tool, MSC. NASTRAN, to cover both the dynamic
structural analysis as well as the aeroelastic solution to flutter. Once the structural part
has been detailed, a discussion about the flutter speed obtained with the Nastran SOL 145
will be presented, followed by some other solutions.

1.1 Structural model

The structure analysed is a typical aircraft wing box that has the following specifications:
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2 Chapter 1. Introduction

• Length: 6.1 m

• Width: 1.22 m

• Mass: 3283 Kg

On the outtermost rib a pod has been installed:

• Length: 3.05 m

• Mass: 328 Kg

• Inertia: 161.7 Kgm2

Proceeding to the FEM model, the latter has been modelled as follows:

• 66 grids.

• 60 rods.

• 20 surface elements.

• Some other rigid bars to model a pod where a missile will be later installed.

These elements can be seen in Figure 1.1:

1.2 FEM Model

• The model contains the following elements:

• GRID: it is used to define nodes in the space

• CONM2: used to define punctual masses and inertia along with their properties

• CROD: rod elements with tension, compression, and torsional capabilities.

• CQUAD4: surface element that links four nodes.

• RBAR: rigid bar element that links two nodes, being the displacement of one node
dependent from the other one. RBARS elements cannot be deformed.

• RBE3: rigid element that links nodes with independent degrees of freedom and nodes
with dependent degrees of freedom. It is used in order to transmit loads and mass.



1.2. FEM Model 3

Figure 1.1: FEM Model of the wing box

• SPC: single point constraint. It is used to set boundary conditions in terms of
displacements.

The reference frame used for the construction of the model has the y-axis along the
wing span and the x-axis normal to it. The z-axis is perpendicular to the other two in
order to obtain a right-handed triad.





Chapter 2

Normal Modes

Once the geometric and FEM model has been created, the second step was to edit the
Nastran .bdf file to configure the solution and obtain the normal modes of vibration. For
the latter, the SOL 103 command has been used.

Firstly, the wing box was clamped at the root, editing the bdf file to constrain the
corresponding nodes. Secondly, the rest of the SOL 103 parameters were set to obtain the
natural modes of free vibration below 50 Hz.

The equation of the system, imposing free vibration and zero damping:

[M ]{ü}+ [K]{u} = 0 (2.1)

And considering harmonic motion:

{u} = {φ}eiωt (2.2)

([K]− ω2[M ]){φ} = 0 (2.3)

Finding the non-trivial roots of this determinant poses an eigenvalue problem, where
λ = ω2. Nastran solves it finding the eigenvalues to calculate the normal modes.

To extract these eigenvalues the Lanczos method has been set as parameter of the SOL
103 configuration. The fringe of each mode obtained by running the solution is presented
in the next section, along with its natural frequency.
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6 Chapter 2. Normal Modes

2.1 Fringe representation of normal modes

(a) Mode 1. First plunge.
fn = 1.56Hz

(b) Mode 2. First torsion.
fn = 2.25Hz

Figure 2.1: Modes 1 and 2

(a) Mode 3. Plunge and torsion I.
fn = 6.99Hz

(b) Mode 4. Plunge around z axis.
fn = 8.78Hz

Figure 2.2: Modes 3 and 4

(a) Mode 5. Plunge and torsion II.
fn = 9.71Hz

(b) Mode 6. Plunge and torsion III.
fn = 12.12Hz

Figure 2.3: Modes 5 and 6
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(a) Mode 7. Plunge and torsion IV.
fn = 17.08Hz

(b) Mode 8. Plunge and torsion V.
fn = 21.18Hz

Figure 2.4: Modes 7 and 8

(a) Mode 9. Plunge and torsion VI.
fn = 24.62Hz

(b) Mode 10. Plunge and torsion VII.
fn = 25.67Hz

Figure 2.5: Modes 9 and 10

(a) Mode 11. Plunge and torsion VIII.
fn = 28.62Hz

(b) Mode 12. Plunge and torsion IX.
fn = 31Hz

Figure 2.6: Modes 11 and 12
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(a) Mode 13. Plunge and torsion X.
fn = 32.8Hz

(b) Mode 14. Plunge and torsion XI.
fn = 33.87Hz

Figure 2.7: Modes 13 and 14

(a) Mode 15. Plunge and torsion XII.
fn = 38.25Hz

(b) Mode 16. Plunge and torsion XIII.
fn = 41.98Hz

Figure 2.8: Modes 15 and 16



Chapter 3

Flutter Equation

It is of great importance to know which are the flight conditions under which the structure
suffers instabilities such as divergence or flutter.

In order to find them, a dynamic analysis must be carried out. The equation of a
dynamic system with damping can be expressed as follows:

[Maa]{üa(t)}+ [Baa]{u̇a(t)}+ [Kaa]{ua(t)} = {Pa(t)} (3.1)

Where ua is the vector of nodal displacements of the a-set,Maa is the a-set mass matrix,
Baa is the a-set damping matrix, Kaa is the a-set stiffness matrix and Pa is the a-set vector
of nodal aerodynamic forces.

Pa can be expressed as a function of the nodal displacements as well:

{Pa(t)} = q∞

∫ t

0

[
Haa

(
2U∞

c
(t− τ),M∞

)]
{ua(τ)}dτ, (3.2)

where q∞ is the dynamic pressure( q∞ = 1
2
ρ∞U

2
∞) and Haa is the step response of the

system for each nodal displacement.

In order to simplify the analysis, the nodal displacements will be considered to be a
combination of the modes of free vibration φah.

{ua(t)} = [φah]{uh(t)} (3.3)

Where uh(t) are the modal displacements or modal coordinates.

The modes used are the ones below 50 Hz obtained in the previous section. It is
considered that those modes approximate well enough the nodal displacements, as flutter
is a low frequency phenomenon.

9



10 Chapter 3. Flutter Equation

The dynamic equation multiplied by φTah:

[φTah][Maa][φah]{üh}+ [φTah][Baa][φah]{u̇h}+ [φTah][Kaa][φah]{uh}} =

q∞

∫ t

0

[φTah]

[
Haa

(
2U∞

c
(t− τ),M∞

)]
[φah]{uh(τ)}dτ

(3.4)

Or expressing it in terms of the generalized stiffness, mass and aerodynamic response
matrices:

[Mhh]{üh(t)}+ [Bhh]{u̇h(t)}+ [Khh]{uh(t)}} =

q∞

∫ t

0

[
Qhh

(
2U∞

c
(t− τ),M∞

)]
{uh(τ)}dτ

(3.5)

There are different methods to solve these equations. Some of them allow to obtain
more accurate results than others but at higher computational cost. A quick method is
the so-called K-method or V-g method.

3.1 K Method

The main idea of this method is that flutter occurs when one mode reaches simple harmonic
motion, i.e. when the real part of the eigenvalue is 0 (zero damping), while the rest of the
modes are still convergent (damped modes). Keeping in mind this idea, a way to find the
boundary between stable and unstable (the flutter boundary) behaviour is by assuming
harmonic motion.

uh(t) = ûhe
iωt (3.6)

Another fundamental reason to do this is that non-steady aerodynamic forces are very
difficult to calculate. In order to avoid this difficulty, recalling the already mentioned idea
about harmonic motion and flutter, it can be assumed that aerodynamic forces are also
harmonic, which are well known. To study the system motion in the frequency domain a
Laplace transformation is applied to equation 3.5:

(
− ω2[Mhh] + iω[Bhh] + [Khh]− q∞

[
Qhh

(
2U∞

c
ω,M∞

)])
{uh(ω)} = 0 (3.7)
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Where {uh(ω)} and [Qhh(
2U∞
c
ω,M∞)] are the Laplace transforms of {uh(t)} and

[Qhh(
2U∞
c
t,M∞)].

A few comments are remarkable in order to explain how damping is modeled:

• It is assumed that the model has no damping, although it is known that it has a
structural damping of 0,03.

• The K method assumes an artificial damping (g) in the sense that it is not a physical
damping present in the structure, but the damping that the structure would require
in order to have harmonic motion as it was assumed before.

• When this artificial damping it is calculated, it is compared with the real one. If the
artificial damping is bigger than the real one, that means that the damping required
to force harmonic motion it is higher than the damping that the structure has, so the
motion will be unstable. On the other hand, if the artificial damping is lower than
the real one, that means that the structure has enough damping to make the motion
convergent.

[Bhh] =
ghh
ω

[Khh] (3.8)

Introducing the reduced frequency k = cω
2U∞

, where c is the wing chord:

((
2kU∞

c

)2

[Mhh]− (ighh + 1)[Khh] +
1

2
ρ∞U

2
∞[Qhh(k,M∞)]

)
{uh} = 0 (3.9)

As the trivial solution has no interest, the flutter solution is the one that makes the
determinant equal to zero:

det

((
2kU∞

c

)2

[Mhh]− (ighh + 1)[Khh] +
1

2
ρ∞U

2
∞[Qhh(k,M∞)]

)
= 0 (3.10)

The latter is the flutter equation of the wing. As it is a complex equation, the reduced
frequency of each mode (k) and the structural damping required to have harmonic motion
for each mode (g) are obtained as a function of the flight conditions. If the g obtained is
greater than the actual structural damping (gstructure), the response will be unstable. If it
is lower, it will be stable. Therefore the intersections between the (V-g) curve and g =

gstructure shows where the system becomes unstable. Their corresponding flight conditions
are the ones associated to the beginning of flutter and must be avoided during flight.
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The generalized mass and stiffness matrices have been obtained during the modal anal-
ysis of the structure. The eigenvectors have been normalized so that the normalized mass
matrix becomes the identity. Since the eigenvectors satisfy the condition of orthogonal-
ity, the stiffness matrix is also diagonal. Both of them are shown below in the form of
pseudovectors, meaning the diagonal of the matrix.

Mhh =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



kg

Khh =



9.582 · 10
1.997 · 102
1.929 · 103
4.044 · 103
3.722 · 103
5.803 · 103
1.151 · 104
1.771 · 104
2.393 · 104
2.600 · 104
3.234 · 104
3.796 · 104
4.247 · 104
4.530 · 104
5.775 · 104
5.956 · 104



N

m

The matrix containing the generalized aerodynamic forces Qhh(k,M∞) has been calcu-
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lated running the Nastran SOL 145 algorithm, which for this case Doublet-Lattice theory
has been applied on every panel section over the wing. The parameter configuration has
been described in section 9.1.

3.2 Static instability: Divergence

After obtaining the flutter equation (3.10) the divergence equation can be easily obtained.
It is only necessary to make k = 0, as the static case has a null frequency. Later on, the
V-g method results will be shown and this instability will be identified as it is the one with
k = 0.





Chapter 4

PK Matched Diagram

In order to obtain the flutter boundary, that is, the velocity at which the phenomenon of
flutter starts, several mathematical methods can be used. For the present report, the PK
method has been applied. It combines the idea of two methods:

• The P method: It solves the equation of flutter directly with non-steady aerodynamics
theories and the unknowns are the real and imaginary parts of the eigenvalues. It is
known from literature to be the most accurate procedure, but it has the disadvantage
that it is not always possible to calculate the unsteady aerodynamic forces.

• The K method: Explained in the previous section. Harmonic motion and harmonic
aerodynamic forces are assumed as a simplification.

In 1971, Hassig demonstrated that the aproximation of harmonic motion and harmonic
aerodynamics forces used in the K method was inadequate in some cases in which the pre-
dictions were wrong. However, the PK method solved this problem relaxing the hypothesis
of harmonic motion, assuming only harmonic aerodynamics forces.

The free-stream air speed U∞ is obtained as a function of the free-stream density ρ∞
and Mach number M∞, according to the International Standard Atmosphere. Therefore,
the result obtained is a PK-Matched Diagram.

Nastran has been used to carry out the flutter analysis by using the PKNL method. The
studied case is a cruise flight at M∞ = 0.8 and altitude within the range [0km<h<32km].
Further details can be read in the appendix where the .bdf file is included for Nastran
analysis.

The following diagrams have been obtained:

15
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Figure 4.1: V-g diagram

Figure 4.2: V-f diagram
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Figure 4.1 shows the relation between g and VEAS and figure 4.2 shows the relation
between harmonic oscillation frequency and VEAS for the first 6 modes of vibration.

4.1 Flutter

The parameter g can be considered as an artificially structural damping. As mentioned
previously, it is the required value of structural damping to have harmonic motion. The
flutter boundary begins at VEAS|flutter = 65.8m

s
, where the damping of the first mode is

equal to 0.03 (see figure 4.1), which is the real structural damping (gstructure). Sometimes,
flutter is described as a phenomenon of energy transfer between modes [2], which starts
being critical when their two frequencies coalesce. This behaviour is shown in the V-f
diagram (4.2), where the frequency of the second mode approaches the first one until they
are equal for VEAS ' VEAS|flutter. It is remarkable to say that a first step in order to avoid
flutter is to separate the frecuencies of the modes that coalesce.

The flutter boundary obtained can be physically regarded as a complete dynamic
interaction between the wing structure and airflow. For any value of speed less than
VEAS|flutter = 65.8m

s
, any disturbance of the wing gets damped with exponentially de-

creasing amplitudes. It could be said that air provides the required damping to attenuate
the disturbance. Above the flutter speed, however, the air provides the sufficient negative
damping, and instead of decreasing the oscillatory motion created by the disturbance, the
amplitude starts increasing exponentially.

In some cases, increasing speed after VEAS|flutter will continuously increase g and the
system will diverge faster. With this wing, if VEAS is high enough, g decreases and gets into
the stable region again (below the red dashed line). This event happens at VEAS = 85.8m

s
.

4.2 Divergence

The V-g curve for the second mode shows a singularity at VEAS = 93.9m
s
, where g goes from

having a big margin of stability to the unstable region. At the same VEAS, its frequency
becomes equal to zero (see 4.2). Therefore this instability is considered to be a static
divergence.





Chapter 5

Joining Wing and Pod with Springs.

Initially, the junction between wing and pod has been considered to be rigid. The previous
results have been obtained with that configuration. In this chapter, the pod has been
joined to the external wing rib by installing springs in the degrees of freedoms of vertical
displacement (along z-axis) and torsion (around y-axis). The rest of degrees of freedom will
be joined in a rigid way. From now on, the value of the stiffness of each spring will be called
kv for the longitudinal one, and kθ for the torsional one. Both of them are ideal springs
with natural elongation equal to zero. Figure 5.1 shows the joined grids with springs. Grid
20005 is part of the external wing rib and Grid 20001 belongs to the pod.

Figure 5.1: Wing-Pod Joint

The Bulk Data Entry of Nastran used to model the connections between both modes
are CELAS2 for the degrees of freedom with springs, and MPC for the rigid connections
(see Fig. 5.2).

19



20 Chapter 5. Joining Wing and Pod with Springs.

Figure 5.2: Section of bdf file to model connection with springs

5.1 Effects of spring stiffness on natural frequencies.

In order to illustrate the effect of the springs on the structure, the first four natural fre-
quencies have been calculated for a range of values of kv and kθ. Figure 5.3 shows the
frequencies for a given value of kθ and a wide range of kv. Figure 5.4 and 5.5 show the
effect of both stiffness on the first and second natural frequency.

Figure 5.3: First four modes Frequencies-kv for kθ = 106
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Figure 5.4: Influence of kv and kθ on the first mode frequency

Figure 5.5: Influence of kv and kθ on the second mode frequency

Frequencies have horizontal asymptotes for great values of kv and kθ. Their asymptotic
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values are the ones obtained in chapter 2, which means that by increasing the stiffness of
the joints, the frequencies approach the values of the rigid joint case (first mode is plunge
and second mode is torsion). For kv ≥ 105N/m and kθ ≥ 105Nm/rad, the frequencies
have values very close to the ones of the rigid joint configuration.
The lower values obtained correspond to the natural frequencies of the springs, that makes
sense because for very low k values, the frecuency mode is proportional to

√
k.

The intermediate values in the plot of second mode (flat part of the plot) correspond to
the frequency of the plunge mode. This is because one stiffness is still very low and the
first mode is approximately the natural frecuency of that spring. However, as it was said,
when both stiffness values are high enough, the frequencies of mode 2 now tend to that of
the torsion mode, and the values of mode 1 tend to the plunge mode.

5.2 Study of pod vibrations.

One of the goals of this analysis report was to find the values for kv and kθ so that the
vibration amplitude of the pod would be smaller than the ones obtained at the wing. As
it is shown below, this is not possible, as the vibrations of the pod are always bigger than
those of the wing.

5.2.1 Effects of spring stiffness on the pod vibration amplitude.

The motion of the whole structure is influenced by the values of the stiffness. In the
previous section, the influence on natural frequencies was studied. Now, the focus will be
on the ratio of vibration amplitude between the tip of the wing and the pod. A comparison
between displacements for grids 20001 (pod) and 20005 (tip of the wing) has been made
for the first modes using different stiffness. These results are shown in figures 5.6 and 5.7 .
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Figure 5.6: Ratio of vertical displacements in plunge mode as a function of kv and kθ

Figure 5.7: Ratio of spins in torsion mode as a function of kv and kθ
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Both figures show that the pod motion will be greater in terms of vertical displacement
and spin than the wing motion for any values of kv and kθ. The minimum is found when
both kv and kθ are extremely high, which means rigid joint. In that case, both ratios are
equal to 1.

Therefore, these springs have no use if the goal is to reduce the vibrations of the pod.
However, they can be used to reduce wing vibrations and improve flutter behaviour as it
will be explained in the next sections.

5.3 Analysis of wing vibrations.

There is plenty of information regarding the theory of dynamics in order to decrease vibra-
tions on any system. One of the most popular approaches is the theory of mass damper,
which could be used to reduce the vibration amplitude under certain conditions.

The wing-pod system can be regarded as one with a mass damper. In this case, the
pod acts as the mass damper while the wing is the system whose vibrations need to be
reduced.

5.3.1 Mass damper.

Structures with small damping as this one, may develop vibrations of big amplitudes for
loads acting at frequencies close to resonance. This response can be reduced by connecting
a mass through a spring and a damper whose values shall be tuned. The original idea of
the tuned mass damper belongs to Frahm [1], who did only include a spring but not a
damper in his mass damper design.

In this section, a mass damper design will be proposed for the model. The pod will be
attached with 2 springs but without dampers, since this is a design requirement. However,
if a damper was introduced, it would be more effective reducing vibrations.

Figure 5.8, shows the configuration for a single degree of freedom problem.
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Figure 5.8: Dynamic vibration absorber attached to a single degree of freedom system [3]

In the studied case, the main body (m1) whose vibrations need to be reduced would be
the wing, while the pod would act as the mass damper (m2).

A similar configuration was studied in [3], where the vibration amplitude is obtained as
a function of the mass ratio (µ = m2

m1
), the natural frequencies (ω1 =

√
k1
m1

and ω2 =
√

k2
m2

,
the damping ratio (ξ1 = c1ω1

2K1
) and the external excitation frequency (ω).

A typical shape of this function has been obtained for the configuration shown in figure
5.8. The values of the parameters do not match with the ones of the wing and the pod
studied. There is no need for that in order to show the qualitative influence of the mass
damper on the system.
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Figure 5.9: Amplification factor in a system with µ = 1
3
, ω1 = 10 rad

s
and ξ1 = 0.05 for a

range of ω2 and ω

The figure shows that properly tuning the stiffness of the spring k2 (i.e. its natural
frequency ω2), the values of ω where the function has a minimum or a maximum can
be changed. The minimum amplification happens when the load acts near the natural
frequency of the mass damper. This system proves to be very effective when the frequencies
of the external loads are known.

Using pod and springs as mass dampers.

If the pod was considered as a combination of two mass dampers, a torsional and a longitu-
dinal one, their resonance frequencies could be easily tuned in order to match the unknown
external load frequency.

The resonance frequency of a longitudinal spring mass damper is f = 1
2π

√
kv
m
, while for

a torsion spring it is f = 1
2π

√
kθ
I
. Where m is its mass and I, its moment of inertia.



5.4. Analysis of the first plunge and torsion modes. Wing and pod motion
decoupling 27

The pod mass and inertia values are mpod = 328.3kg and Ipod = 161.7kgm2. Conse-
quently, the desired values of stiffness to reduce vibrations would be kv = (2πf)2mpod and
kθ = (2πf)2Ipod, with f the frequency of the external load.

This criteria of selecting stiffness values will be applied in section (6.1) to increase the
flutter-boundary velocity.

5.4 Analysis of the first plunge and torsion modes. Wing
and pod motion decoupling

Another criteria to tune the stiffness constants is presented in this subsection.

In order to understand how stiffness will affect the shape of the first modes of plunge and
torsion, a representation of the free-wing (stiffness constants equal to zero) and joined-wing
(rigidly attached to the pod) is shown in Figure 5.10 and Figure 5.11.

(a) Mode 1.
f1 = 1.77Hz

(b) Mode 2.
f2 = 3.04Hz

Figure 5.10: Free wing modes.

(a) Mode 1.
f1 = 1.58Hz

(b) Mode 2.
f2 = 2.25Hz

Figure 5.11: Rigid-joined wing modes.
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Figure 5.10 shows that plunge and torsion are coupled for the first two modes of the
free-wing. One design requirement could be to uncouple the first two modes of the wing
so that there would be pure plunge for the first one and pure torsion for the second. To
achieve this, their frequencies have to be close to the ones of the rigid joining case, which
involves high values of stiffness.

Furthermore, an additional goal could be to uncouple the motion between wing and
pod. This means that the vertical displacement and pitch of the pod would not be influ-
enced by the plunge and torsion of the wing. This uncoupling condition can be achieved
by maximizing the relative motion between pod and wing. And by recalling the results
obtained in section 5.2.1, this relative motion was increased by setting low values of kv and
kθ.

In conclusion, in order to satisfy both of the mentioned requirements a compromise
solution must be achieved. By trying to find intermediate stiffness values, and using the
results from Figure 5.4 and Figure 5.5, a couple of stiffness constants that satisfy the
frequency constraint are kv = 3.75 · 105N/m and kθ = 3.75 · 105Nm/rad. It was proved
that lower values of stiffness constants provided a first mode of pure plunge, but they
degraded the response of the second mode, so they were discarded. The modal shapes
using the selected stiffness constants are shown in Figure 5.12.

(a) Mode 1.f1 = 1.53Hz

(b) Mode 2.f2 = 2.18Hz

Figure 5.12: Natural modes of the wing-pod system

These results show that the rotation motion around the wing axis has been significantly
damped in the first mode, resulting in a quasi-pure plunge mode. Additionally, the vertical
displacement amplitude in the second mode has been reduced in contrast to the free-wing
second mode. Regarding the natural frequencies, they are lower than the ones of the rigid
joined wing (1.16% for first mode and 2.24% for the second one). Finally, the relative
vibration amplitude between the wing’s tip and the pod is vpod

vwing
= 1.0929 in the first

mode and θpod
θwing

= 1.0913 in the second mode. This pair of stiffness constants provides a
compromise solution for the mentioned requirements.

The influence of these results in VEAS|flutter will be discussed in section 6.1.
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Flutter Instability in the Flexible Joint
Configuration

Spring stiffness values alter the response of the wing to flutter instability, as they modify
the natural behaviour of the structure to free vibration as well as its interaction with the
aerodynamic forces.

It is important to recall from the flutter analysis in the rigid joining case that flutter
occurred at VEAS = 65.8m

s
for the first normal mode, while at VEAS = 93.9m

s
the dynamic

divergence appeared for the second one.

Spring stiffness can be tuned in order to increase the flutter-boundary speed. In this
section, the results of two different procedures are shown. The first one, is based on the
concept of mass dumper explained in section 5.3.1; the second one consists in uncoupling
the torsion and flexion of the first two modes of the structure, explained in section 5.4.
Each procedure returns two different values for kv and kθ, and a different value of flutter
boundary velocity.

6.1 Increasing flutter speed matching flutter and mass
damper resonance frequency

In section 5.3.1, the use of the pod as a mass damper was explained and it was said that
it was possible to reduce the vibrations of the system by tuning its resonance frequency.
This was very useful when the frequency of the external load acting on the structure was
known. Following this idea, in order to increase the velocity of the flutter boundary, the
resonance frequency of the mass damper should be close to the frequency where flutter
instability is expected to appear.

In the rigid attachment configuration, flutter instability was associated with a frequency

29
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fflutter = 1.61Hz. The pod has a mass mpod = 328.3kg. Therefore, in order to improve
flutter, its stiffness should be kv = mpod(2πfflutter)

2 = 3.36 · 104N/m.

The torsional spring can be tuned in the same way. With Ipod = 161kgm2, kθ =

Ipod(2πfflutter)
2 = 1.65 · 104Nm/rad.

Figure 6.1: V-g Diagram with kv = 3.36 · 104N/m and kθ = 1.65 · 104Nm/rad

Figure 6.2: V-f Diagram with kv = 3.36104 ·N/m and kθ = 1.65 · 104Nm/rad
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Figure 6.1 and 6.2 show that flutter is no longer associated with the first mode, but
with the second one, at a velocity VEAS = 77.7m

s
, that is greater than in the rigid case and

at a frequency fflutter = 2Hz.

By tuning again the mass damper for the new flutter frequency: kv = 5.185 · 104N/m
and kθ = 2.542 · 104Nm/rad.

Figure 6.3: V-g Diagram with kv = 5.185 · 104N/m and kθ = 2.542 · 104Nm/rad

Figure 6.4: V-f Diagram with kv = 5.185 · 104N/m and kθ = 2.542 · 104Nm/rad
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Flutter velocity has increased again. Now its value is 95.7m
s
, almost the same as the

divergence velocity, which is not affected by the spring stiffness. The flutter frequency for
this case is 2.1Hz. Now flutter is associated with the third mode.

The third iteration is the last one, as it returns the same flutter frequency than the
second one (f = 2.1Hz). The stiffness are kv = 5.716·104N/m and kθ = 2.803·104Nm/rad.
Its diagrams are shown below:

Figure 6.5: V-g Diagram with kv = 5.716 · 104N/m and kθ = 2.803 · 104Nm/rad
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Figure 6.6: V-f Diagram with kv = 5.716 · 104N/m and kθ = 2.803 · 104Nm/rad

Flutter boundary appears at mode 3, at a velocity VEAS = 103m
s
.

This procedure to tune springs has shown good results to increase flutter velocity. The
values of kv and kθ obtained are not the optimal ones for increasing it, as the relation
between modes, frequencies and aerodynamic loading is complex and a more extended
analysis would be necessary to find them. However they will be used as initial points for
a sensitivity analysis of flutter-speed boundary.

As a general rule, the improvement the flutter is associated to the separation in fre-
cuency of the modes that exchange energy between them, as it can be seen in the previous
graphs.

6.1.1 Frequency analysis

A frequency analysis has been carried out for the rigid joint configuration and for the
wing with the values of stiffness obtained at the end of section 6.1 (kv = 5.716 · 104N/m
and kθ = 2.803 · 104Nm/rad). The results obtained are the displacement of the external
wing rib (grid 20005) when a load of frequency f is applied on that same node. SOL 111
of Nastran has been used for this purpose. Figure 6.7 shows how different the dynamic
behaviour of both configurations is.
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Figure 6.7: Relation between vertical displacement and frequency for the vertical load
applied.

6.2 Influence of decoupling modes on flutter phenomena

In section 5.4, a pair of spring stiffness values were obtained following a criteria of de-
coupling torsional and plunge modes. In this section, it will be shown how the results
of applying the PKNL method in Nastran with those stiffness (kv = 3.75 · 105N

m
and

Kθ = 3.75 · 105Nm
rad

) will have an influence on flutter phenomenon.

The Figure 6.8 showing the damping coefficient confirms a static divergence at the same
point where the rigid-joined model also diverges, while flutter disappears completely.

Furthermore, it can be seen in Figures 6.8 and 6.9 how the second mode (red curve) tries
to get into flutter by extracting energy from the first (blue curve) and third mode (yellow
curve), which slowly decreases its damping and frequency. In the end, the frequencies of
both modes 2 and 3 get to be separated from each other, which means that mode 2 does
not get to extract the sufficient energy from mode 3 to get over the 3% damping line.

As a conclusion, it can be noticed that both springs not only manage to uncouple the
normal modes but they also increase the flutter speed to an undefined limit.
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Figure 6.8: V-g diagram with the implemented springs

Figure 6.9: V-f diagram with the implemented springs
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6.3 Chosen spring stiffness values

In the previous sections 6.1 and 6.2, stability boundaries for two different pairs of spring
stiffness were studied. The pair obtained in section 6.1 increases flutter velocity by 56%,
which is a significant improvement in terms of stability. The other pair, obtained in
5.4, has shown an even better improvement, as flutter does not occur for the studied
flight conditions. Therefore, these last ones will be chosen as the final values for the
flexible joint that will satisfy the mentioned design requirements (kv = 3.75 · 105N/m and
kθ = 3.75 · 105Nm/rad).
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Sensitivity Analysis

It has been proved from section 6.2 that there were values of kv and kθ for which not only
could the first normal modes of the wing be uncoupled but they also managed to avoid
flutter at M = 0.8.

However, if these stiffness values were to be used as the central points within a range
of kv and kθ to find how flutter velocities vary in a sensitivity analysis, the latter could not
be performed since flutter does not appear as mentioned above.

Indeed, for this sensitivity analysis, the pair of kv and kθ that have been used are the
ones obtained in section 6.1, in which the concept of mass damper was used in order to
find stiffness values that would progressively increase the flutter-boundary velocity. These
values are: kv = 5.716 · 104N

m
and kθ = 2.803Nm

rad

The analysis was set up to express flutter speed as a function of the torsion spring
constant, kθ, in which kv remained as variable parameter. By running several simulations
the results obtained are shown in figure 7.1.

Notice how flutter speed always grows with both spring constants in the range selected.

37
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Figure 7.1: Evolution of flutter-boundary speed as a function of kv, for different constant
values of kθ

Increasing stiffness along the gradient direction might result in obtaining an optimal
pair of values. There is no need to do that, as a pair of stiffness values that avoid flutter
has already been obtained. Nevertheless, this figure shows valuable information, as for
example, how sensitive flutter velocity UF,EAS is to changes in stiffness.

However, the behaviour of the system is not monotonous as it can be expected with
figure 7.1. When high enough values are reached, the flutter velocity decreases again. This
fact is proved because when both k tend to infinite (rigid case), the flutter velocity tends
to 65.8m/s.
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Concluding Remarks

The present work has accomplished all its objectives. Firstly, the structure has been
characterized by its first 16 normal modes (the ones with a frecuency below 50Hz). In
addition, its generalized mass and stiffness matrices have been calculated.

After describing the flutter equation for the K-Method, a flutter analysis with Nastran
has been carried out, using the PK method. As a result, the instability boundaries of the
wing (flutter and divergence) have been obtained. There was a big difference between the
flutter-boundary velocity and divergence velocity. The range of operation is limited by the
lowest of these two (flutter in this case).

The suggested structural alteration of the wing, which consisted in changing the rigid
joint between wing and pod into a flexible one, was successfully implemented in the model.
The stiffness values of the springs used in the flexible union were used as design variables
in order to reduce wing vibrations.

An initial requirement of design was to reduce pod vibrations related to those of the
wing. However, this report proved that it was not possible. The configuration under which
they are minimum is the rigid case.

Nevertheless, wing vibrations could be reduced by properly tuning the spring stiffness
based on the mass damper concept. By doing so, flutter-instability velocity could be
increased.

A second requirement was to uncouple motion between wing and pod, which has also
been achieved.

All together, two different approaches were made in order to correctly set the spring
stiffness. Both have shown very good results; the first one increased flutter velocity by
56%, while the other makes flutter to disappear.

Hence, the modified wing range of operation is no longer limited by flutter, as the most
restrictive speed is the one for which divergence appears, on which flexible joining has

39
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no effect. If the design goal was to increase this range, the divergence speed should be
increased.

A way to do this without altering the structure, is by choosing a material with an
higher Young’s module. The ultimate configuration will be able to fly at higher speeds and
lower altitudes than the initial one. These changes could make the wing more valuable to
potential customers as it could be used in a more extended flight envelope, turning it into
a more versatile wing.



41



42 Chapter 9. Appendix

Chapter 9

Appendix

9.1 Bdf file for flutter analysis of rigid joint configura-
tion

Flutter Solution

Real Eigenvalue Method Selection

Flutter Analysis Method Selection
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Aerodynamic Panel for Doublet-Lattice Theory

Geometry Definition

List of Span Division Points

List of Chord Division Points

Surface Spline for Interpolating Forces
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List of structural grid points for the spline

Real Eigenvalue Extraction Method: Lanczos

Frequency range of interest Normalize to unit value of the generalized mass

Basic parameters for unsteady aerodynamics

Flutter Data

PK Method
No Looping

Pointers to FLFACTs

Mach Number - Frequency Table for Aerodynamic Matrix Calculation

Mach Numbers for Flutter Analysis

Density Ratios for Flutter Analysis
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Velocities for Flutter Analysis
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9.2 Aerodynamic mesh for flutter analysis

In order to carry out the flutter analysis of the wing, the Doublet-Lattice Method is used
to calculate the aerodynamic unsteady forces. This method requires the wing to be divided
into panel elements. The aerodynamic mesh of the model is show in Figure 9.1. The mesh
has 10 sections along the chord following a cosinus distribution law and sixteen sections
along the span following an exponential distribution law.

Figure 9.1: Aerodynamic Mesh.
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9.3 Matlab-Nastran Interface

9.3.1 Description

An interface has been developed along this project in order to link Matlab and Nastran.
This interface allows users to do a modal parametric analysis and a flutter parametric
analysis in a user-friendly environment. Matlab is the software in charge of the parametric
analysis and Nastran is in charge of the structural-dynamics and aeroelastic simulations.

The interface has been programmed using Matlab and it has the following functions:

1. Create .bdf input file for a SOL103 analysis in Nastran of the wing box model for
different values of kv and kθ.

2. Create .bdf input file for a SOL145 analysis in Nastran of the wing box model for
different values of kv and kθ, aerodynamic mesh and flight conditions(M∞,h).

3. Execute Nastran by loading a .bdf input file.

4. Read .f06 results file from a SOL103 analysis in Nastran and get natural frequencies
and displacements of desired nodes of the model.

5. Read .f06 results file from a SOL145 analysis in Nastran, plot V-g and V-f diagrams,
get the static divergence speed and get the flutter speed of the model.

9.3.2 Interface Schematic

The interface can be described by the following schematic:

Figure 9.2: Interface Functional Schematic
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9.4 Matlab code used to obtain modal response analysis
for a range of kv and kθ

1 f unc t i on calculate_dynamic_response_Main
2

3 k_f = logspace (0 , 7 , 60 ) ;
4 k_th=logspace (0 , 7 , 60 ) ;
5

6 frec_all_modes = ze ro s (4 , l ength ( k_f ) , l ength (k_th) ) ;
7 v20001_allmodes = ze ro s (4 , l ength ( k_f ) , l ength (k_th) ) ; %Ve r t i c a l

d i sp lacements node 2001
8 v20005_allmodes = ze ro s (4 , l ength ( k_f ) , l ength (k_th) ) ; %Ve r t i c a l

d i sp lacements node 2005
9 th20001_allmodes = ze ro s (4 , l ength ( k_f ) , l ength (k_th) ) ; %Twist node

20001
10 th20005_allmodes = ze ro s (4 , l ength ( k_f ) , l ength (k_th) ) ; %Twist node

20005
11 ratio_v_mode1 = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
12 ratio_v_mode2 = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
13 ratio_th_mode1 = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
14 ratio_th_mode2 = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
15

16 f o r j =1: l ength (k_th)
17 f o r i =1: l ength ( k_f )
18 %Change the value o f s t i f f n e s s e s k_f and k_th in the bdf

f i l e
19 change_bdf ( k_f ( i ) , k_th( j ) ) ;
20 %Run Nastran with the new bdf f i l e
21 run_Nastran
22 %Read f06 f i l e to obta in modes f r e qu en c i e s and

e i g enve c t o r va lue s
23 %in node 20001(pod ) and node 20005 (wing )
24 [ f r e c , u20001 , u20005 ] = f06_reader ( ’

modos_propios_muelles_sinPunch_editado . f06 ’ ) ;
25 frec_all_modes ( : , i , j ) = f r e c ;
26 v20001_allmodes ( : , i , j ) = u20001 ( : , 1 ) ;
27 v20005_allmodes ( : , i , j ) = u20005 ( : , 1 ) ;
28 th20001_allmodes ( : , i , j ) = u20001 ( : , 2 ) ;
29 th20005_allmodes ( : , i , j ) = u20005 ( : , 2 ) ;
30 end
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31 end
32

33 v_20001_mode1 = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
34 v_20001_mode1 ( : , : ) = v20001_allmodes ( 1 , : , : ) ;
35 v_20005_mode1 = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
36 v_20005_mode1 ( : , : ) = v20005_allmodes ( 1 , : , : ) ;
37 frec_mode1 ( : , : ) = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
38 frec_mode1 ( : , : ) = frec_all_modes ( 1 , : , : ) ;
39 frec_mode2 ( : , : ) = ze ro s ( l ength ( k_f ) , l ength (k_th) ) ;
40 frec_mode2 ( : , : ) = frec_all_modes ( 2 , : , : ) ;
41 ratio_v_mode1 ( : , : ) = v20001_allmodes ( 1 , : , : ) . / v20005_allmodes

( 1 , : , : ) ;
42 ratio_v_mode2 ( : , : ) = v20001_allmodes ( 2 , : , : ) . / v20005_allmodes

( 2 , : , : ) ;
43 ratio_th_mode1 ( : , : ) = th20001_allmodes ( 1 , : , : ) . / th20005_allmodes

( 1 , : , : ) ;
44 ratio_th_mode2 ( : , : ) = th20001_allmodes ( 2 , : , : ) . / th20005_allmodes

( 2 , : , : ) ;
45

46 f i g u r e
47 mesh (k_f , k_th , ratio_v_mode1 ) ,
48 s e t ( gca , ’ XScale ’ , ’ l og ’ ) ;
49 s e t ( gca , ’ YScale ’ , ’ l og ’ ) ;
50 s e t ( gca , ’ ZScale ’ , ’ l og ’ ) ;
51 t i t l e ( ’ F i r s t mode v e r t i c a l d i sp lacements re sponse ’ )
52 x l ab e l ( ’k_{\ theta }(Nm/rad ) ’ ) , y l ab e l ( ’k_v(N/m) ’ ) , z l a b e l ( ’v_{pod}/

v_{wing} ’ ) ,
53

54 f i g u r e
55 mesh (k_f , k_th , ratio_th_mode2 ) ,
56 s e t ( gca , ’ XScale ’ , ’ l og ’ ) ;
57 s e t ( gca , ’ YScale ’ , ’ l og ’ ) ;
58 s e t ( gca , ’ ZScale ’ , ’ l og ’ ) ;
59 t i t l e ( ’ Second mode t o r s i o n a l re sponse ’ )
60 x l ab e l ( ’k_{\ theta }(Nm/rad ) ’ ) , y l ab e l ( ’k_v(N/m) ’ ) , z l a b e l ( ’ \ theta_{

pod}/\ theta_{wing} ’ ) ,
61

62 f i g u r e
63 mesh (k_f , k_th , frec_mode1 ) ,
64 s e t ( gca , ’ XScale ’ , ’ l og ’ ) ;
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65 s e t ( gca , ’ YScale ’ , ’ l og ’ ) ;
66 t i t l e ( ’ F i r s t mode f requency ’ )
67 x l ab e l ( ’k_{\ theta }(Nm/rad ) ’ ) , y l ab e l ( ’k_v(N/m) ’ ) , z l a b e l ( ’ F i r s t

mode f requency $\ d i s p l a y s t y l e (\ f r a c { rad }{ s }) $ ’ , ’ i n t e r p r e t e r ’ , ’
l a t e x ’ ) ,

68

69 f i g u r e
70 mesh (k_f , k_th , frec_mode2 ) ,
71 s e t ( gca , ’ XScale ’ , ’ l og ’ ) ;
72 s e t ( gca , ’ YScale ’ , ’ l og ’ ) ;
73 t i t l e ( ’ Second mode f requency ’ )
74 x l ab e l ( ’k_{\ theta }(Nm/rad ) ’ ) , y l ab e l ( ’k_v(N/m) ’ ) , z l a b e l ( ’ Second

mode f requency $\ d i s p l a y s t y l e (\ f r a c { rad }{ s }) $ ’ , ’ i n t e r p r e t e r ’ , ’
l a t e x ’ ) ,

75 end
76

77 f unc t i on change_bdf ( k_f , k_th) %Changes value o f s t i f f n e s s e s k_f
and k_th in the bdf f i l e

78 f i l e ID = fopen ( ’ modos_propios_muelles_sinPunch_parte1 . bdf ’ , ’ r ’ ) ;
79 A=f s c a n f ( f i l e ID , ’%c ’ ) ;
80 f c l o s e ( f i l e ID ) ;
81 f i l e ID = fopen ( ’ modos_propios_muelles_sinPunch_parte2 . bdf ’ , ’ r ’ ) ;
82 B=f s c a n f ( f i l e ID , ’%c ’ ) ;
83 f c l o s e ( f i l e ID ) ;
84 f i l e ID = fopen ( ’ modos_propios_muelles_sinPunch_editado . bdf ’ , ’w ’ ) ;
85 k_f_string=num2str ( k_f , ’%.2E ’ ) ;
86 k_th_string=num2str (k_th , ’%.2E ’ ) ;
87 s_f l =[ ’CELAS2 2105 ’ , k_f_string , ’ 20005 3 20001 3 ’

] ;
88 s_tor=[ ’CELAS2 2106 ’ , k_th_string , ’ 20005 5 20001 5

’ ] ;
89

90 f p r i n t f ( f i l e ID , ’%s \n ’ ,A) ;
91 f p r i n t f ( f i l e ID , ’%s \n ’ , s_f l ) ;
92 f p r i n t f ( f i l e ID , ’%s \n ’ , s_tor ) ;
93 f p r i n t f ( f i l e ID , ’%s \n ’ ,B) ;
94 f c l o s e ( f i l e ID ) ;
95 end
96

97 f unc t i on run_Nastran
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98 %Delete prev ious Nastran r e s u l t s f i l e and order nastran to run a
99 %new ana l y s i s with the new bdf f i l e

100 de l e t e ( ’C: \ Users \Al fonso \Documents\ un ive r s idad \master \2
_Cuatrimestre \ Ae r o e l a s t i c i d ad Avanzada\Trabajo\Apartado4\
modos_propios_muelles_sinPunch_editado . f04 ’ ) ;

101 de l e t e ( ’C: \ Users \Al fonso \Documents\ un ive r s idad \master \2
_Cuatrimestre \ Ae r o e l a s t i c i d ad Avanzada\Trabajo\Apartado4\
modos_propios_muelles_sinPunch_editado . f06 ’ ) ;

102 de l e t e ( ’C: \ Users \Al fonso \Documents\ un ive r s idad \master \2
_Cuatrimestre \ Ae r o e l a s t i c i d ad Avanzada\Trabajo\Apartado4\
modos_propios_muelles_sinPunch_editado . l og ’ ) ;

103 %Run Nastran
104 s t a tu s = system ( ’C: \MSC. Software \

MSC_Nastran_and_Patran_Student_Editions\20190\Nastran\bin \
nastranw . exe modos_propios_muelles_sinPunch_editado . bdf ’ ) ;

105 %Gives time to nastran to generate the r e s u l t f i l e s
106 pause (6 )
107 end
108

109 f unc t i on [ f r e c , u20001 , u20005 ] = f06_reader ( f i l ename )
110 A = f i l e r e a d ( f i l ename ) ;
111 u20005_index = s t r f i n d (A, ’ 20005 G’ ) ;
112 u20001_index = s t r f i n d (A, ’ 20001 G’ ) ;
113 u20005_matrix = ze ro s (4 , 6 ) ;
114 u20001_matrix = ze ro s (4 , 6 ) ;
115 f o r i =1:4
116 u20005_matrix ( i , : ) = str2num (A( u20005_index ( i ) +17:

u20005_index ( i )+105) ) ;
117 u20001_matrix ( i , : ) = str2num (A( u20001_index ( i ) +17:

u20001_index ( i )+105) ) ;
118 end
119 f requency_index = s t r f i n d (A, ’STIFFNESS ’ ) ;
120 f rec_matr ix = str2num (A( ( frequency_index (1 )+10) : ( frequency_index

(1 )+10+121∗4) ) ) ;
121 f r e c = frec_matr ix ( : , 4 ) ;
122 u20001 = u20001_matrix ( : , [ 3 , 5 ] ) ;
123 u20005 = u20005_matrix ( : , [ 3 , 5 ] ) ;
124 end
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