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Chapter 1

The integers

1.1 What are the integers?

Definition 1.1.1. The integers are a set Z of elements

. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .

that have the usual operations∗ of + and ×, the usual relation† <, and that satisfy the
following properties, for all a, b, c ∈ Z:

Z1. a+ (b+ c) = (a+ b) + c,

Z2. a+ b = b+ a,

Z3. 0 + a = a+ 0 = a,

Z4. −a ∈ Z and a+ (−a) = 0,

Z5. a× (b× c) = (a× b)× c,

Z6. a× b = b× a

Z7. a× 1 = a

Z8. a× (b+ c) = (a× b) + (a× c)

Z9. if a < b then a+ c < b+ c,

Z10. if 0 < a and 0 < b then 0 < ab.

Z11. Well-Ordering Axiom If S is a nonempty subset of positive integers, and every ele-
ment of S is ≥ 0, then S contains a smallest element.

∗If we wanted to define the integers more formally, we would use a more precise statement of what “+” and
“×” are.
†If we were being more formal, we’d list the hidden assumptions that we’re making about “<”: that it is total,

meaning given any two integers we can say that one is smaller than the other, and that it is transitive, meaning
that if a < b and b < c then a < c.
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Theorem 1.1.2. The following properties hold for any a, b, c ∈ Z:

(a) If a+ b = a+ c then b = c.

(b) 0× a = a× 0 = 0.

(c) −(−a) = a.

(d) a× (−b) = (−a)× b = −(a× b).

(e) (−a)× (−b) = a× b.

(f) a× (b− c) = a× b− a× c.

(g) If a× b = a× c, and a 6= 0, then b = c.

(h) If a < b and 0 < c then ac < bc.

(i) If a 6= 0 and a× b = a× c then b = c.

(j) −a = −1× a.

(k) 1 > 0.

(l) If a < b, and c < 0 then a× c > b× c.

(m) If a < 0 and b > 0 then a× b < 0. If a < 0 and b < 0 then a× b > 0.

(n) There does not exist d ∈ Z satisfying a < d < a+ 1.

(o) There exists some n ∈ Z such that n× b > a.

Theorem 1.1.3 (Division algorithm). Let a, b ∈ Z with b > 0. There exist unique elements
q, r ∈ Z such that a = qb+ r with 0 ≤ r < b.

This is where we ended on Wednesday, September 3

1.2 Divisibility

Definition 1.2.1. Let a, b ∈ Z. We say that a divides b if b = ac for some c ∈ Z. We write
this as a|b. Synonyms are “b is divisible by a”, “b is a multiple of a”, “a is a factor of b”, etc.

This is where we ended on Monday, September 8

Definition 1.2.2. Let a, b ∈ Z, not both 0. A common divisor of a and b is a number that
divides a and divides b. We say that d ∈ Z is a greatest common divisor of a and b if d is a
common divisor of a and b and d is ≥ any other common divisor of a and b. If gcd(a, b) = 1
then we say that a and b are relatively prime.
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Theorem 1.2.3 (GCD equals Z-linear combination). Let a, b ∈ Z, not both 0. Then

gcd(a, b) = na+mb

where (1) n,m ∈ Z, (2) na+mb ≥ 0, and (3) na+mb is the smallest number satisfying (1)
and (2). In other words, gcd(a, b) is the smallest positive Z-linear combination of a and b.

This is where we ended on Wednesday, September 10

Theorem 1.2.4. If a|bc and gcd(a, b) = 1, then a|c.

1.3 Unique factorization and the integers

Definition 1.3.1. Let p ∈ Z with p 6= 0,±1. We say that p is prime if the only integers that
divide p are ±1 and ±p.

Definition 1.3.2. Let n ∈ Z. We say that n is a product of primes if (1) n is prime or (2)
n = p1 . . . pr for some primes p1, . . . , pr.

Theorem 1.3.3 (Fundamental Theorem of Arithmetic I: Existence of factorization). Let n ∈
Z with n 6= 0,±1. Then we can write n as a product of primes.

Theorem 1.3.4 (Euclid’s Lemma). Let p ∈ Z with p 6= 0,±1. Then p is prime if and only if it
satisfies this property:

∀a, b ∈ Z, if p|ab then p|a or p|b (∗)

Theorem 1.3.5 (Fundamental Theorem of Arithmetic II: Uniqueness of factorization). Let
n ∈ Z, n 6= 0,±1. Then the prime factorization given by Theorem 1.3.3 is unique. In other
words, if

n = p1 · · · pr = q1 · · · qs
where each pi and each qi is a prime, then r = s and, if necessary, we may rearrange the factors
on one side, so that pi = ±qi for each i.

1.3.1 Applications

Definition 1.3.6. The prime cipher encrypts text as follows:

• Encode letters as prime numbers as follows:
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a=2
b=3
c=5
d=7

e=11
f=13
g=17
h=19

i=23
j=29
k=31
l=37

m=41
n=43
o=47
p=53

q=59
r=61
s=67
t=71

u=73
v=79
w=83
x=89

y=97
z=101

• Take a message in plain text, remove the spaces, break the letters up into blocks of 3,
or as long as possible without including a repeated letter.

• For each block of text replace each letter with it’s prime, and raise the prime to the n
power where n is the position of the letter within the block.

• For each block, multiply the primes, including their powers, together. The resulting
number is the encrypted version of the block, and the list of all blocks is the encrypted
version of the message.

• To decrypt you factor each block, put each prime in the correct position using the
power, and then turn the primes back into letters.

This is where we ended on Monday, September 15



Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes

Definition 2.1.1. Let n ∈ Z, n ≥ 2. For all a, b ∈ Z, if n|(a− b) then we write a ≡ b (mod n)
and we say that a is congruent to b modulo n. If the value of n is clear in context, then we
will write just a ≡ b, dropping “(mod n)”.

Theorem 2.1.2 (Congruence is an Equivalence Relation). Let n ∈ Z, n ≥ 1. The relation
a ≡ b (mod n) is an equivalence relation. In other words, ∀a, b, c ∈ Z, we have the following:

1. a ≡ a (mod n) (reflexive property),

2. if a ≡ b (mod n), then b ≡ a (mod n) (symmetric property),

3. if a ≡ b (mod n), and b ≡ c (mod n), then a ≡ c (mod n) (transitive property).

Theorem 2.1.3. Let n ∈ Z with n ≥ 1. Let a ≡ b (mod n) and c ≡ d (mod n). Then the
following hold:

1. a+ c ≡ b+ d (mod n),

2. ac ≡ bd (mod n).

Definition 2.1.4. Let n ∈ Z, n ≥ 1. Given any b ∈ Z we define

[b] = {a ∈ Z | a ≡ b (mod n)}.

For example, we have

[−2] = {a ∈ Z | a ≡ −2 (mod n)}
[0] = {a ∈ Z | a ≡ 0 (mod n)}
[3] = {a ∈ Z | a ≡ 3 (mod n)}
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In other words, [b] is the set of all integers that are congruent to b modulo n. We call this set
the congruence class of b modulo n.

Theorem 2.1.5. Let n ∈ Z, n ≥ 1. For all a, b ∈ Z we have

[a] = [b] if and only if a ≡ b (mod n).

This is where we ended on Monday, September 22

Definition 2.1.6. The set of all equivalence classes modulo n is denoted by Zn.

2.2 Modular Arithmetic

This is where we ended on Wednesday, September 24

Theorem 2.2.1. Let n ∈ Z, n ≥ 1. Let A and C be equivalence classes in Zn. Let a, b ∈ A and
c, d ∈ C. Then

[a+ c] = [b+ d] and [ac] = [bd].

In other words, it doesn’t matter which elements we use in A and C to define addition and
multiplicaiton.

Definition 2.2.2. Let n ∈ Z, n ≥ 1. Let Zn be the collection of all equivalence classes of
integers modulo n. The canonical representatives of Zn are as follows:

Zn =
{
[0], [1], . . . , [n−1]

}
.

We define addition and multiplication in Zn as follows:

[a]⊕ [c] = [a+ c] and [a]� [c] = [ac].

Theorem 2.2.3. For all [a], [b], [c] in Zn the following hold:

Zn 1. [a]⊕ (b⊕ c) = ([a]⊕ b)⊕ c,

Zn 2. [a]⊕ b = b⊕ [a],

Zn 3. [0]⊕ [a] = [a]⊕ [0] = [a],

Zn 4. [a]⊕ [−a] = 0,

Zn 5. [a]� ([b]� [c]) = ([a]� [b])� [c],

Zn 6. [a]� [b] = [b]� [a]
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Zn 7. [a]� [1] = [a]

Zn 8. [a]� ([b]⊕ [c]) = ([a]� [b])⊕ ([a]� [c])

Definition 2.2.4. Let [a] ∈ Zn and let k ∈ N. We define

k[a] = [a]⊕ · · · ⊕ [a] (repeated k times)

[a]k = [a]� · · · � [a] (repeated k times)

This is where we ended on Friday, September 26

2.3 The structure of Zp and Zn

Definition 2.3.1. We define new notation for the elements of Zn:

old notation: [0], [1], [a], etc.

new notation: 0, 1, a

and addition and multiplcation:

old notation: 1⊕ 2, a⊕ b, 1� 2, a� b, etc.

new notation: 1 + 2, a+ b, 1 · 2 or 1× 2, ab, etc.

and even for equivalence:

old notation: 2 + 5 ≡ 3 (mod 4)

new notation: 2 + 5 = 3.

The new notation has the advantage that there’s a lot less to write, and things look more
similar to what we are used to with algebra in Z and R. It has the disadvantage that we
have to remember that we’re not working over Z anymore, even though it looks like we are.

Definition 2.3.2. Let a ∈ Zn. If ax = 1 has a solution we call a a unit. If ax = 0 has a
solution with a 6= 0 and x 6= 0 we call a a zero divisor

Theorem 2.3.3 (Zp has only units, and no zero divisors). Let p ∈ Z, p > 1 (we do not assume
that p is prime). The following statements are equivalent:

1. p is prime,

2. for any a ∈ Zp , if a 6= 0 then the equation ax = 1 has a solution x ∈ Zp ,
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3. for all a, b ∈ Zp , if ab = 0 then a = 0 or b = 0.

Theorem 2.3.4 (Classifying units and zero divisors in Zn). Let a ∈ Zn , with a 6= 0.

1. ax = 1 has a solution x ∈ Zn if and only if gcd(a, n) = 1.

2. ax = 0 has a nonzero solution x ∈ Zn if and only if gcd(a, n) 6= 1.
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